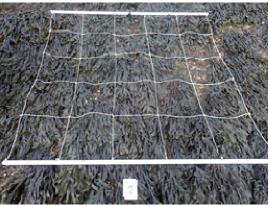
DCE-Benthos MACROALGUES FIXEES

DCE-Benthos – Macroalgues Fixées Sous-éléments de qualité "Macroalgues Subtidales (et faune associée)" et "Macroalgues Intertidales"

Surveillance des MEC et MET du bassin Loire-Bretagne Année 2022


Rapport final

Sandrine DERRIEN-COURTEL, Coordinatrice DCE – Macroalgues Fixées
Ar Gall Erwan †, Barillé Anne-Laure, Burel Thomas, Clair Margot, Cocaud Annaïk,
Delemarre Marion, Devienne Benoît, Harin Nicolas, Helias Mathieu, Le Duff Michel,
Nebout Thibaut, Sauriau Pierre-Guy, Thirion Jean-Marc, Truhaud Nicolas, Vollette Julie

Coordination Edition: Vf1-22/02/2024

<u>Page de Couverture : Crédits Photos</u> : ©IDRA Bio & Littoral ; ©BIO-LITTORAL ; ©IUEM-UBO ; ©OBIOS & CNRS-UnivLaRochelle-LIENSs

Ce « Rapport final » peut être cité de la manière suivante :

Derrien-Courtel S. Ar Gall E. †, Barillé A.-L., Burel T., Clair M., Cocaud A., Delemarre M., Devienne B., Harin N., Helias M., Le Duff M., Nebout T., Sauriau P.-G., Thirion J.-M., Truhaud N., Vollette J. (2024). DCE-Benthos - Macroalgues Fixées, Sous-éléments de qualité "Macroalgues Subtidales (et faune associée)" et "Macroalgues Intertidales", Surveillance des MEC et MET du bassin Loire-Bretagne, Année 2022. "Rapport final- Vf1-22/02/2024". 227pp.

Pré ambule

La **directive cadre européenne sur l'eau** (DCE) 2000/60/CE établit le cadre de la politique communautaire dans le domaine de l'eau. Elle fixe l'objectif, initialement à l'horizon 2015, d'un bon état écologique et chimique des masses d'eau souterraines et de surface, ces dernières incluant les eaux côtières et de transition (estuaires en particulier).

Les masses d'eau côtières et de transition sont des unités géographiques cohérentes, qui ont été définies sur la base de critères ayant une influence avérée sur la biologie :

- critères hydrodynamiques (courant, marnage, stratification, profondeur,...),
- critères sédimentologiques (sable, vase, roche,...).

Le bassin Loire - Bretagne, des cours d'eau côtiers bretons et vendéens, comprend 39 masses d'eau côtières et 30 masses d'eau de transition entre le Mont Saint-Michel et La Rochelle, rattachées à 12 types de masses d'eau côtières (côte vaseuse modérément exposée, côte rocheuse macrotidale profonde,...) et 5 types de masses d'eau de transition en fonction de critères hydrodynamiques et sédimentologiques.

L'article 8 de la DCE prévoit la mise en œuvre d'un programme de surveillance des masses d'eau, de manière à « dresser un tableau cohérent et complet de l'état des eaux au sein de chaque bassin hydrographique ». Ce programme est défini par période de 6 ans correspondant à la durée d'un « plan de gestion ».

Pour répondre à cette demande, chaque bassin a ainsi défini différents réseaux de contrôles dans le cadre des schémas directeurs des données sur l'eau (SDDE) prévus par la circulaire du 26 mars 2002 du Ministère chargé de l'environnement.

Le programme de surveillance comprend quatre types de contrôles :

- le contrôle de surveillance (RCS), qui a pour objectifs :
 - d'apprécier l'état écologique et chimique des masses d'eau côtières et de transition,
 - ➤ de compléter et valider le classement RNAOE,
 - d'évaluer à long terme les éventuels changements du milieu,
- ➤ de contribuer à la définition des mesures opérationnelles à mettre en place pour atteindre le bon état écologique.

Le contrôle de surveillance a vocation à s'exercer sur un nombre suffisant de masses d'eau pour permettre une évaluation générale de l'état écologique et chimique des eaux à l'échelle du bassin hydrographique. En Loire-Bretagne, le choix des masses d'eau suivies s'est fait sur la base de plusieurs critères (type de masse d'eau, répartition nord/sud, nature des pressions anthropiques exercées,...).

- le *contrôle opérationnel* (RCO), mis en place sur les masses d'eau à risque de non atteinte des objectifs environnementaux (RNAOE) et qui porte sur les paramètres responsables de la mauvaise qualité des masses d'eau ;
- le *contrôle d'enquête* (RCE), mis en œuvre pour rechercher les causes d'une mauvaise qualité en l'absence de réseau opérationnel, ou pour évaluer l'ampleur et l'incidence d'une pollution accidentelle ;
- le *contrôle additionnel* (RCA), destiné à vérifier les pressions qui s'exercent sur les zones « protégées », c'est-à-dire les secteurs ou activités déjà soumis à une réglementation européenne (ex. : zones conchylicoles, Natura 2000, baignades).

En France, le programme de surveillance a été initialement défini par un arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement. Cet arrêté a été modifié en juillet 2011 puis remis à jour par l'arrêté du 7 août 2015 : http://www.legifrance.gouv.fr/arrete7aout2015

Le choix des points de surveillance a été fait par le groupe de travail « DCE littoral Loire-Bretagne » en tenant compte des réseaux de surveillance déjà existants et mis en œuvre par l'Ifremer (REPHY, ROCCH, REBENT) et les DDTM (Réseau des Estuaires Bretons, réseaux de suivi de la qualité des eaux saumâtres et marines).

L'évaluation de l'état des masses d'eau s'appuie sur un état chimique et un état écologique.

Les critères d'évaluation de l'état écologique et chimique des masses d'eau applicables en France ont été précisés initialement dans l'arrêté ministériel du 25 janvier 2010 et réactualisés pour le prochain cycle 2016 – 2021 dans un arrêté du 27 juillet 2015 :

http://www.legifrance.gouv.fr/arrete27juillet2015

Le tableau ci-après résume les éléments à prendre en considération :

Etat chimique	Etat écologique
- substances prioritaires (24);	- biologie ;
- substances dangereuses (21).	- physico-chimie sous-tendant la biologie ;
	- autres micro polluants (polluants spécifiques synthétiques et
	non synthétiques).

Pour les masses d'eau littorales, ces éléments de qualité se déclinent en :

- Éléments de qualité biologique :
 - phytoplancton (chlorophylle a et efflorescences phytoplanctoniques);
 - flore aquatique (autre que le phytoplancton) :
 - blooms de macroalgues opportunistes ;
 - macroalgues intertidales;
 - macroalgues subtidales;
 - herbiers de zostères ;
 - faune benthique invertébrée de substrat meuble.
- Éléments de qualité physico-chimique soutenant les paramètres biologiques :
 - oxygène dissous;
 - concentration en nutriments;
 - transparence (turbidité), température de l'eau, salinité.

Certains des éléments de qualité biologique (algues subtidales, invertébrés benthiques) ne sont pas suivis pour l'instant dans les masses d'eau de transition, soit parce qu'ils sont jugés non pertinents, soit parce que les protocoles de surveillance sont en cours de construction.

Seuls les éléments de qualité biologiques « macroalgues intertidales » et les « macroalgues subtidales » (et faune associée) sont pris en compte dans ce rapport, la surveillance DCE des habitats rocheux étant coordonnée depuis 2017 par le MNHN-Station Marine de Concarneau.

Ce rapport présente les résultats issus de la campagne 2022 de la surveillance DCE du district Loire-Bretagne, réalisée par l'IUEM-UBO, Bio-Littoral, IDRA Bio & Littoral et OBIOS - CNRS-Univ.LaRochelle-LIENSs (Fig. 1).

Concernant les **roches intertidales**, les données analysées concernent le suivi de la flore intertidale rocheuse de 10 stations en MEC et 5 stations en MET.

Le suivi de la faune des stations des masses d'eau côtières (MEC) étant financé via le programme DCSMM (via un autre financement), ces données seront donc présentées via un autre rapport.

Au titre du RCS (Réseau de Contrôle de Surveillance), 15 masses d'eau sont étudiées. Elles concernent 10 MEC: le suivi de Perros-Guirec (large) (GC08), Iroise (large) (GC18), Lorient-Groix (GC34), Belle-Ile (GC42), Baie de Vilaine (côte) (GC44), Baie de Vilaine (large) (GC45), Loire (large) (GC46), Ile d'Yeu

(GC47), Nord Sables d'Olonne (GC50) et Pertuis breton (GC53). Elles concernent également 5 MET : Le Trieux (GT03), L'Odet (GT15), L'Aven (GT16), Le Blavet (GT20) et La Loire (GT28).

Concernant les **roches subtidales**, les données analysées se rapportent au protocole « DCE-2 complet » pour 7 MEC et au protocole « DCE-2 partiel » pour 2 MEC, Lorient-Groix (GC34) et Baie de Vilaine (large) (GC45).

Sur les 7 MEC suivies via le « protocole DCE-2 complet », toutes sont suivies au titre du dispositif RCS : Paimpol – Perros-Guirec (GC07), Rade de Brest (GC16), Iroise (large) (GC18), Baie de Douarnenez (GC20), Baie d'Audierne (GC26), Nord Sables d'Olonne (GC50), hormis l'Île de Ré (large) (GC52) qui est suivie « hors RCS » pour son intérêt biogéographique (enjeu laminaires).

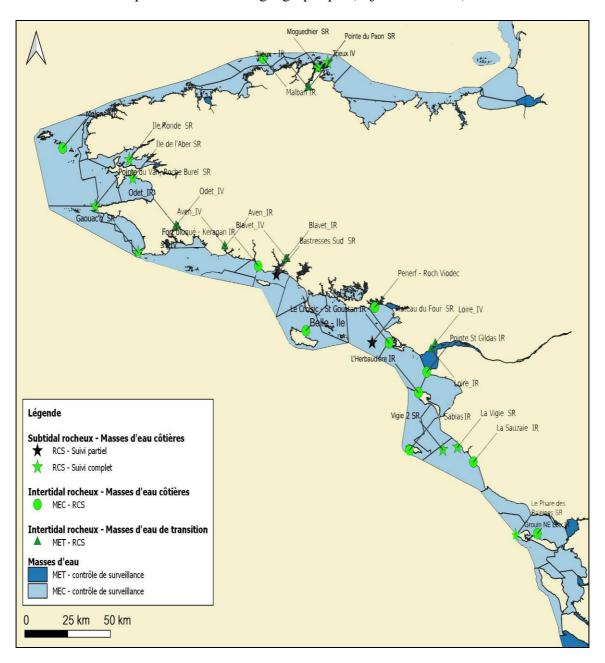


Fig. 1: 2022: Carte des sites suivis – Macroalgues Fixées

Sommaire

Préambule	3
Sommaire	6
Présentation des acteurs	13
Chapitre 1. MEC : Flore des roches intertidales – Indice CCO	14
1. Présentation générale de l'habitat	
Stratégie d'échantillonnage Pégyltete de le gyproillonge	14
3. Résultats de la surveillance	
1) Malban	
2) Molène	
3) Keragan – Fort Bloqué	<u> </u>
4) Port Guen – Belle-Ile	25
5) Pénerf – Roch Viodec	<u> </u>
6) Le Croisic – St Goustan 7) Pointe St Gildas	
8) L'Herbaudière	
9) Sabias (Ile d'Yeu)	
10) La Sauzaie	
11) Grouin NE	
4. Calcul de l'indice de qualité des MEC	80
1) GC08- Perros-Guirec (large)	80
2) GC18-Iroise (large)	81
3) GC34-Lorient-Groix	
4) GC42-Belle-Ile	
5) GC44-Baie de Vilaine (côte)	
6) GC45-Baie de Vilaine (large)	87
7) GC46-Loire (large) – 1 ^{er} site	89
8) GC46-Loire (large) – 2° site	91
9) GC47-Ile d'Yeu	92
10) GC50-Nord Sables d'Olonne	94
11) GC53-Pertuis Breton	95
5. Discussion	
1) Variations inter-annuelles	
2) Variations intra-annuelles	
6. Conclusion et Perspectives	
Chapitre 2. MET : Flore des roches et vases intertidales – Indice ABER	118
1. Présentation générale de l'habitat	
1) Végétation de substrat dur	118
2) Végétation de substrat meuble	
2. Stratégie d'échantillonnage	
3. Résultats de la surveillance et calcul de l'indice de qualité des MET	122
4. Conclusion et Perspectives	
The Constitution of Temperature	
Chapitre 3. MEC : Flore et faune des roches subtidales – Indice QISubMac	127
1. Présentation générale de l'habitat	
2. Stratégie d'échantillonnage	
3. Résultats de la surveillance et calcul de l'indice de qualité des MEC	130
1) Pointe du Paon – GC07 (Ile de Bréhat)	130
1) Pointe du Paon – GC07 (Ile de Bréhat) 2) Moguedhier (Trieux) – FRGC07 (Paimpol – Perros-Guirec)	137
3) L'Ile Ronde (Brest) – FRGC16 (Rade de Brest)	144
4) Pointe du Van (Roche Burel, Cap Sizun) – FRGC18 (Iroise (large))	150
5) Ile de l'Aber – FRGC20 (Baie de Douarnenez)	
6) Gaouac'h – FRGC26 (Baie d'Audierne)	161
7) Bastresse Sud – FRGC34 (Lorient – Groix)	168
8) Bonen du Four (Plateau du Four) – FRGC45 (Baie de Vilaine (large))	171
9) La Vigie – FRGC50 (Nord Sables d'Olonne)	174
10) Phare des Baleines – FRGC52 (Ile de Ré (large)) / hors RCS	181
4. Conclusion et Perspectives	

Chapitre 4. Macroalgues fixées : Conclusion	
1. Evaluation des MEC	100
2. Evaluation des MET	188
3. Evaluation des Macroalgues de 2017 à 2022	
4. Discussion_	190
5. Conclusion	192
Bibliographie	194
Annexe 1 : Prospection de la MEC FRGC 42 – Belle-Ile en Mer	197
Annexe 2 : Espèces caractéristiques par ceinture algale selon les spécificités biogéographiques	
des côtes charentaises	209
Annexe 3 : Flore et faune des roches subtidales : Typologie des ceintures algales	210
Annexe 4 : Flore et faune des roches subtidales : Les différents stades de nécroses de la laminaire	
Laminaria hyperborea	212
Annexe 5 : EQR et notes des métriques de quelques stations subtidales sur la période 2016 – 2019 (ou 2020) - 2022	214
Liste des figures Fig. 1 : 2022 : Carte des sites suivis – Macroalgues Fixées Fig. 2 : Opérateurs sur le terrain : Macroalgues fixées	13
Fig. 3 : 2022 : Carte des sites suivis : MEC – Flore des roches intertidales Fig. 4 : 2022 : Carte de localisation du site de Malban	15
Fig. 5 : 2022 : Localisation du site de Molène	26
Fig. 6 : 2022 : Carte de localisation du site de Keragan – Fort Bloqué Fig. 7 : 2022 : Carte de localisation du site de Port Guen – Belle-Ile	30
Fig. 8: 2022: Carte de localisation du site de Pénerf – Roch Viodec	36
Fig. 9 : 2022 : Carte de localisation du site de Le Croisic – St Goustan Fig. 10 : 2022 : Carte de localisation du site de St Gildas et de l'Herbaudière	39
Fig. 11: 2022: Relevés du site de la Pointe St Gildas au printemps	43
Fig. 12 : 2022 : Relevés du site de la Pointe St Gildas à l'automne	46
Fig. 13 : 2022 : Relevés du site de l'Herbaudière au printemps Fig. 14 : 2022 : Relevés du site de l'Herbaudière à l'automne	52
Fig. 15: 2022: Carte de localisation du site des Sabias (Ile d'Yeu)	55
Fig. 16 : 2022 : Relevés du site des Sabias au printemps Fig. 17 : 2022 : Relevés du site des Sabias à l'automne	55 58
Fig. 18: 2022: Carte de localisation du site de la Sauzaie (Bretignolles)	61
Fig. 19 : 2022 : Relevés du site de la Sauzaie au printemps Fig. 20 : 2022 : Transect de la Sauzaie au printemps, zone colonisée par des hermelles et des corallines	62 62
Fig. 21 : 2022 : Relevés du site de la Sauzaie à l'automne	64
Fig. 22 : 2022 : Transect de la Sauzaie à l'automne, zone colonisée par des hermelles et des corallines Fig. 23 : 2022 : Localisation du site de Grouin NE Loix (Ile de Ré) IR au Nord de l'île de Ré à marée basse	64 66
Fig. 24 : Station du Grouin NE Loix (île de Ré) IR, vue Nord à marée basse en 2007	67
Fig. 25 : Profil du site du Grouin NE Loix (île de Ré) IR avec extension des ceintures algales Fig. 26 : Profil du site du Grouin NE Loix (île de Ré) IR : Transect 2022 de printemps pour le relevé des limites de ceintures	
Fig. 27 : Grouin NE Loix (île de Ré) IR : Profil du site avec position des points au printemps 2022 pour chaque ceinture algale	71
Fig. 28 : Vue de quelques espèces nouvellement observées au Grouin en 2022	78-79
Fig. 29 : Saint Gildas : Recouvrement d'algues vertes à l'automne 2022_ Fig. 30 : Evolution des surfaces de macroalgues dans le secteur de la Pointe de Saint-Gildas entre décembre 2004 (couverture annuelle minimale) et juin 20103	102
(couverture annuelle maximale)	103
Fig. 31 : Ceinture ensablée (Fucus serratus et Ascophyllum nodosum) au printemps 2022 (Gauche) ; Ceinture ensablée (Fucus serratus) à l'automne 2022 (Droite) Fig. 32 : Evolution de l'ensablement du secteur de l'Herbaudière Fig. 33 : Evolution sédimentaire des Sabias (Yeu)	104 105
Fig. 34: Evolution de la surface des ceintures algales sur le site de la Sauzaie entre 2014 et 2021	106
Fig. 35: La couverture algale sur le point DCE An1 en mai 2010 et en mars 2022. Fig. 36: Evolution de la couverture algale sur et autour du point An2 entre les printemps 2013 et le printemps 2022.	111
Fig. 37 : Variation interannuelle de la contribution des 3 indices « couverture & surface », « espèces caractéristiques » et « espèces opportunistes » à	
l'indicateur macroalgues de substrat dur intertidal pour la masse d'eau côtière « Pertuis Breton – FRGC53 ». Fig. 38 : Vue du haut de l'estran sur le site du Grouin avec une faible couverture algale dans les ceintures à Fucales à l'automne 2022.	113 113
Fig. 39: Présence d'une touffe en 2017 de Pelvetia canaliculata et absence de celle-ci sur la digue du Fiers d'Ars au lieu-dit prise du Grand Garçon accès	
au site Fiers d'Ars du contrôle de surveillance herbier de Zostera noltei Fig. 40 : Présence de Undaria pinnatifida au printemps 2022 : thalles de taille moyenne non coupés (à gauche) et stipe d'un spécimen coupé par	114
une collecte professionnelle à usage alimentaire (à droite)	115
Fig. 41: Présence de Mastocarpus stellatus dans la ceinture des algues rouges en association avec le mollusque bivalve Rocellaria dubia	
et les algues <i>Ellisolandia elongata</i> et <i>Chondracanthus acicularis</i> Fig. 42 : 2022 : Carte des sites suivis : MET – Flore des roches et vases intertidales	119
Fig. 43: Exemples de points d'échantillonnage sur substrat rocheux (a) et de la vase indurée (b)	121
Fig. 44 : Communautés de Fucales sur les rives du Blavet Fig. 45 : Abondance de chacun des 3 groupes considérés (Chlorophyta, Cyanobacteria et Vaucheria) en pourcentage pour chacun des 5 estuaires étudiés	122
Fig. 46: Filament coenocytique de Vaucheria (a), oogone observé sur un individu de l'Aven (b) et aplanospore (c)	123
Fig. 47 : Principales algues vertes observées dans cette étude Fig. 48 : Exemples de cyanobactéries observées dans cette étude	123 124
Fig. 49 : Richesse spécifique pour chaque groupe de macroalgues (Chlorophyta, Phaeophyceae et Rhodophyta) pour les 5 estuaires étudiés	
et pour les 3 communautés de Fucales Fig. 50 : 2022 : Carte des sites suivis : MEC - Flore des roches subtidales (et faune associée)	125
Fig. 51: Pointe du Paon: Apercu du site depuis la surface en juillet 2022	130
Fig. 52 : Pointe du Paon : Évolution de l'extension en profondeur des limites des ceintures algales Fig. 53 : Pointe du Paon : Laminaria hyperborea, Laminaria ochroleuca et Saccorhiza polyschides	130
	131

11g. J) : :	Pointe du Paon : Richesse spécifique totale au -3m CM (N2)	132
Fig. 5	56 : 1	Pointe du Paon : Densité des espèces floristiques inventoriées au -3m CM (N2)	133
Fig. 5	57 :]	Pointe du Paon : Densité des espèces faunistiques dénombrables inventoriées au -3m CM (N2)	134
Fig. 5	58:	Pointe du Paon : Evolution de la composition de la strate arbustive selon la bathymétrie (m CM)	135
Fig. 5	59:1	Pointe du Paon : Longueur cumulée des stipes d'algues arbustives pérennes	135
Fig. C	50 : I	Pointe du Paon : Quelques espèces observées sur le site en 2022	130
Fig. 6	51 : I	Moguedhier : Aperçu du site depuis la surface en juin 2022 Moguedhier : Evolution de l'extension en profondeur des limites des ceintures algales	137
Fig. 6	52 53 · 1	Moguedhier: Espèces structurantes observées les 07 et 08 juin 2022	138
Fig. 6	54 : 1	Moguedhier: Richesse spécifique totale au -3m CM (N2)	139
Fig. 6	55 : 1	Moguedhier : Densité des espèces floristiques inventoriées au -3m CM (N2)	140
Fig. 6	56 : 1	Moguedhier : Densité des espèces faunistiques inventoriées au -3m CM (N2)	141
Fig. 6	57 :]	Moguedhier: Densité des espèces faunistiques inventoriées au -13m CM (N4)	141
Fig. 6	58 : 1	Moguedhier : Evolution de la composition de la strate arbustive selon la bathymétrie (m CM)	142
Fig. 6	59:1	Moguedhier: Longueur cumulée des stipes d'algues arbustives pérennes (Profondeurs en m C.M.)	142
Fig. 7	70:1	Moguedhier : Quelques espèces observées en 2022	143
Fig. 7	71 : 1	Ile Ronde: Apercu du site depuis la surface en avril 2022	144
Fig. 7	72:1	Ile Ronde: Evolution de l'extension en profondeur des limites des ceintures algales	144
Fig. 7	73 : 1	Ile Ronde : Phéophycées présentes en avril 2022	145
Fig. 7	74 : 1	Ile Ronde: Richesse spécifique totale au -3m CM (N2)	146
Fig. 7	75 :]	Ile Ronde : Densité des espèces floristiques inventoriées au -3m CM (N2)	147
Fig. 7	/6:	Ile Ronde : Densité des espèces faunistiques dénombrables inventoriées au -3m CM (N2)	148
F1g. 7	77:1	Ile Ronde : Evolution de la composition de la strate arbustive selon la bathymétrie (m CM)	149
Fig. /	/8 : I	Ile Ronde : Longueur cumulée des stipes d'algues arbustives pérennes	149
F1g. /	79:1	Pointe du Van : Aperçu du site depuis la surface en septembre 2022	150
rig. 8	5U ∷ R1 + 1	Pointe du Van : Evolution de l'extension en profondeur des limites des ceintures algales Pointe du Van : Espèces d'algues brunes observées le 19 septembre 2022	151
Fig. 8	31 : I	Pointe du Van : Espèces d'algues brunes observées le 19 septembre 2022	152
Fig. 8	34 : 1 33 · 1	Pointe du Van : Richesse specifique totale au -3m CM (N2) Pointe du Van : Densité des espèces floristiques inventoriées au -3m CM (N2)	153
Fig 9	33 . I	Pointe du Van : Densité des espèces faunistiques dénombrables inventoriées au -3m CM (N2).	154
Fig 8	35 - 1	Pointe du Van : Densite des especes fadinistiques denontrables inventoriees au -5 in CM (N2). Pointe du Van : Evolution de la composition de la strate arbustive selon la bathymétrie (m CM).	155
Fig 8	36 • 1	Pointe du Van : Longueur cumulée des stipes d'algues arbustives pérennes	155
Fig. 8	37 :]	Ile de l'Aber: Aperçu du site depuis la surface en avril 2022	156
Fig. 8	38 :]	Ile de l'Aber : Evolution de l'extension en profondeur des limites des ceintures algales	157
Fig. 8	39 : 1	Ile de l'Aber : Espèces d'algues brunes observées le 21 avril 2022	157
Fig. 9	90 : 1	Ile de l'Aber : Aperçu des sédiments coquilliers au -6,4m CM	157
Fig. 9	91 : 1	Ile de l'Aber : Richesse spécifique totale au -3m CM (N2)	159
Fig. 9	92 : 1	Ile de l'Aber : Densité des espèces floristiques inventoriées au -3m CM (N2)	159
Fig. 9	93:1	Ile de l'Aber: Densité des espèces faunistiques dénombrables inventoriées au -3m CM (N2)	160
Fig. 9	94 : 1	Ile de l'Aber : Evolution de la composition de la strate arbustive selon la bathymétrie (m CM)	160
Fig. 9	95 : (Gaouac'h : Evolution de l'extension en profondeur des limites des ceintures algales	161
Fig. 9	96 : 0	Gaouac'h : Evolution de la composition de la strate arbustive selon la bathymétrie	162
Fig. 9	97 : (Gaouac'h : Illustration de la flore et faune de l'infralittoral supérieur	164
Fig. 9	98 : (Gaouac'h : Illustration de la faune du circalittoral	166
F1g. 5	1 9 : 1	Gaouac'h : Longueur cumulée des stipes d'algues arbustives pérennes	167
Fig. I	100:	: Bastresse Sud : Evolution de l'extension en profondeur des limites des ceintures algales	168
Fig. I	101 :	: Bastresse Sud : Bande sableuse en fin de transect sur le site : Bastresse Sud : Longueur cumulée des stipes d'algues arbustives pérennes par bathymétrie	170
Fig. 1	102	: Bonen du Four : Evolution de l'extension en profondeur des limites des ceintures algales	170
Fig. 1	103 . 104 ·	: Bonen du Four : Relevé de la strate arbustive à -3m, -5,5m, -8,8m sur 5 quadrats « Q- »	171
Fig. 1	105	: Bonen du Four : Champs de Saccorhiza polyschides	172
Fig. 1	106	: Bonen du Four : Evolution de la composition de la strate arbustive selon la bathymétrie	173
Fig. 1	107	: Bonen du Four : Longueur cumulée des stipes d'algues arbustives pérennes par bathymétrie	
Fig. 1		The state of the s	173
	108 :	: La Vigie 1 : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022	173 174
Fig. 1	108 :	: La Vigie 1 : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022	174
Fig. 1	108 : 109 : 110 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022	174 174 175
Fig. 1	108 : 109 : 110 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022	174 174 175
Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022	174 174 175 175 176
Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site	174 174 175 175 176 177
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022	174 174 175 175 176 177 178
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 : 114 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022	174 175 175 176 177 178 179
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022	174 175 175 176 177 178 179 179
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie	174 174 175 175 176 177 178 179 179
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022	174 175 175 176 177 178 179 179 180 181
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 : 117 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022	174 175 175 176 177 178 179 179 180 181 181
Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1	108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 : 117 : 118 : 119 :	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022	174 175 175 176 177 178 179 179 180 181 181
Fig. 1	1108: 1109: 1109: 1110: 11111: 1111: 111: 111: 111: 111: 111: 111: 11:	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022	174 177 175 175 176 177 178 179 180 181 181 182 183
Fig. 1	1108: 1109: 1110: 11111: 1111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 1	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022	174 174 175 175 176 177 178 179 179 180 181 181 182 183
Fig. 1	1108: 1109: 1110: 11111: 1111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 1	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie 1 : Cliona celata observée sur le site : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aphysia	174 174 175 175 176 177 178 179 179 180 181 181 182 183 183
Fig. 1	1108: 1109: 1110: 11111: 1111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 1	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie 1 : Cliona celata observée sur le site : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aphysia	174 174 175 175 176 177 178 179 179 180 181 181 182 183 183
Fig. 1	1108: 1108: 1109: 1110: 1110: 1110: 11111: 11111: 11111: 1111111: 111111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 111: 111: 111: 111: 11	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aplysia : EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne	174 174 175 175 176 177 178 179 180 181 181 182 183 183 191 193
Fig. 1 Fig. 1	1108: 1108: 1109: 1109: 1110: 11111: 11112: 11113: 11114: 11115: 11116: 11116: 11116: 11116: 1111111111	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Composition de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aplysia : EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne	174 174 175 175 176 177 178 179 180 181 181 182 183 183 191 193 193
Fig. 1	1108 : 1108 : 1109 : 1109 : 1110 : 11111 : 11112 : 11113 : 11114 : 11115 : 11117 : 111	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aplysia : EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Position et étendue de la masse d'eau GC 42 (en bleu) en Bretagne	174 174 175 175 176 177 178 179 180 181 181 183 183 191 193 193 193
Fig. 1	1108 : 1108 : 1109 : 1109 : 1110 : 11111 : 1112 : 1113 : 1114 : 1115 : 1116 : 1116 : 1116 : 1117 : 1	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site. : La Vigie 1 : Cliona celata observée sur le site : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aplysia : EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Sites visités lors de la prosp	174 174 175 175 176 177 178 179 180 181 181 182 183 183 191 193 193 197 198
Fig. 1 Fig. 1	1108: 1108: 1109: 1110: 1110: 11111: 11111: 11111: 11111: 111111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 111: 111: 111: 111: 111: 111: 11:	: La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur : La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur : La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 : La Vigie 1 : Cliona celata observée sur le site : La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 : La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 : La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 : La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie : Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 : Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 : Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 : Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 : Phare des Baleines : Aplysia : EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne : Position et étendue de la masse d'eau Gêtère GC	174 175 175 176 177 178 179 180 181 181 182 183 183 191 193 193 197 198 198
Fig. 1 Fig. 1 Fig. 2 Fig. 3 Fig. 1	1108: 1108: 1109: 1109: 1110: 11111: 11111: 11111: 11111: 111111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 11111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 1111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 11:	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Strate arbustive de l'infralittoral supérieur La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Composition de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Aplysia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Position et étendue de la masse d'eau GC 42 (en bleu) en Bretag	174 174 175 175 176 177 178 179 180 181 181 182 183 183 191 193 193 193 197 198 198
Fig. 1	1108 : 1109 : 1110 : 1110 : 1111 : 1112 : 11115 : 1116 : 1116 : 1117 : 1	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Strate arbustive de l'infralittoral supérieur La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Cliona celata observée sur le site La Vigie 1 : Cliona celata observée sur le site La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales observées en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Aplysia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Sites visités lors de la prospection dans la masse d'	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 193 194 198 199 200
Fig. 1	1108 : 1109 : 1110 : 1110 : 1111 : 1112 : 11115 : 1116 : 1116 : 1117 : 1	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Strate arbustive de l'infralittoral supérieur La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Cliona celata observée sur le site La Vigie 1 : Cliona celata observée sur le site La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales observées en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Aplysia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Sites visités lors de la prospection dans la masse d'	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 193 194 198 199 200
Fig. 1	1108 : 1109 : 1110 : 1111 : 1112 : 1113 : 1114 : 1115 : 1116 : 1117 : 1117 : 1119 : 1120 : 1121 : 1122 : 1123 : 1124 : 1126 : 1126 : 1127 : 1128 : 1128 : 1128 : 1129 : 1130 : 1131 : 1132 : 1133 : 1134 : 1133 : 1134 : 11	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Cliona celata observée sur le site La Vigie 1 : Cliona celata observée sur le site La Vigie 1 : Cliona celata observée sur le site La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Composition de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : (appisia) EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Position et étendue de la masse d'eau GC 42 (en bleu) en Bretagne Sites visités lors de la prospection dans la masse d'eau côtière GC42 « Belle-Ile » (en bleu) Es	174 174 175 175 176 177 178 179 180 181 181 183 183 183 191 193 193 193 194 199 200 200 201
Fig. 1	1108 : 1109 : 1109 : 1110 : 1111 : 1112 : 1113 : 1114 : 1115 : 1116 : 1116 : 1117 : 11	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Cliona celata observée sur le site. La Vigie 1 : Toffil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Aplysia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Sites visités lors de la prospection dans la masse d'eau côtière GC42 « Belle-lle » (en bleu) Estr	174 174 175 175 176 177 178 179 180 181 181 182 183 183 191 193 193 197 198 199 200 201 202
Fig. 1 Fig. 2 Fig. 1	108	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022. La Vigie 1 : Cliona celata observée sur le site. La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Omposition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie. Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022. Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022. Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022. Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022. Phare des Baleines : Apósia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Couverture algale» (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces carposition dans la masse d'eau GC 42 (en bleu) en Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Sites visités lors de la prospection dans la masse d'ea	174 174 175 175 176 177 178 179 180 181 181 182 183 183 191 193 193 197 198 198 200 201 202 202
Fig. 1	108	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 : La Vigie 1 : Strate arbustive de l'infralittoral supérieur . La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur . La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 . La Vigie 1 : Cliona celata observée sur le site . La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 . La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 . La Vigie 2 : Distribution bathymétrique relevé en 2016 et 2022 . La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 . La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie . Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 . Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 . Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 . Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 . Phare des Baleines : Aplysia . EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne . Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne . Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne . Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne . Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne . Sites visités lors de la prospection dans la masse d'eau côtière GC42 « Belle-Ile » (en bleu) . Estran de Port Jean . Estran de Port Yorc'h . Communauté de milleu-bas d'estran à Pors Yorc'h, composée de Sabellari	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 193 197 198 198 199 200 201 202 202 202 203
Fig. 1	108	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022. La Vigie 1 : Cliona celata observée sur le site. La Vigie 1 : Cliona celata observée sur le site. La Vigie 2 : Distribution de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie. Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022. Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022. Phare des Baleines : Profil pathymétrique relevé en 2012 en Loire-Bretagne Métrique « Couvertrue algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Sites visités lors de la prospection dans la masse d'eau côtière GC42 « Belle-Ile » (en bleu	174 174 175 175 176 177 178 179 180 181 181 183 183 193 193 193 193 193 194 198 198 200 201 202 202 202 203 204
Fig. 1	108 109 110 1111	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 2 : Evolution de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Evolution de la strate arbustive du haut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fr	174 174 175 175 176 177 178 179 180 181 181 183 183 193 193 193 193 193 193 193 200 200 201 202 202 202 203 204 204
Fig. 1	108 109 110 1111 1112 1112 1113 1114 1115 1116 1117 1118 1119 1120 120 120 1212 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138 138 139 140	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Cliona celate observée sur le site. La Vigie 1 : Cliona celate observée sur le site La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie. Phare des Baleines : Profil bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Aphysia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Couverture algale » (IR) et « Densité des espèces structurantes » (SR) des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristiques » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces opportunistes » des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 197 198 199 200 201 202 202 202 202 204 205
Fig. 1 Fi	108 108 109 110	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Cilona celate observés sur le site. La Vigie 1 : Cilona celate observés sur le site. La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022 La Vigie 2 : Distribution bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie. Phare des Baleines : Profil bathymétrique relevé en 2011 et l'imite de ceintures algales observées en 2022 Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2012 Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022. Phare des Baleines : Evolution des ceintures d'accurrence des algues entre 2014 et 2022. Phare des Baleines : Profil des fréquences d'occurrence des algues entre 2014 et 2022. Phare des Baleines : Profil des fréquences d'occurrence des algues entre 2014 et 2022. Phare des Baleines : Profil des fréquences d'occurrence des algues entre 2014 et	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 193 197 198 199 200 201 202 202 202 204 204 205 205 205
Fig. 1 Fig. 1 Fig. 2 Fig. 1	108 108 109 110	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive du site étudié en 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive dan laut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion d	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 193 193 193 200 201 202 202 202 202 204 205 206 206 206
Fig. 1 Fig. 1 Fig. 2 Fig. 1	108 108 109 110	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022 La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022 La Vigie Profil bathymétrique relevé en 2016 et limite de ceintures algales observées en 2022 La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022 La Vigie 2 : Composition de la strate arbustive du site étudié en 2022 La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022 Phare des Baleines : Evolution de la strate arbustive dan laut (gauche) vers le bas du transect (droite) en 2022 Phare des Baleines : Composition de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Evolution temporelle des fréquences d'occurrence des algues entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion de la strate arbustive dans l'infralittoral supérieur entre 2014 et 2022 Phare des Baleines : Profusion d	174 174 175 175 176 177 178 179 180 181 181 182 183 183 193 193 193 193 193 200 201 202 202 202 202 204 205 206 206 206
Fig. 1 Fi	108	La Vigie 1 : Evolution des ceintures algales entre 2009 et 2022. La Vigie 1 : Strate arbustive de l'infralittoral supérieur La Vigie 1 : Evolution de la composition de la strate arbustive dans l'infralittoral supérieur. La Vigie 1 : Evolution de la fréquence d'occurrence des espèces composant la sous-strate de l'infralittoral supérieur entre 2017 et 2022. La Vigie 1 : Citoina celata observée sur le site. La Vigie 2 : Illustration de la strate arbustive du site étudié en 2022. La Vigie 2 : Distribution bathymétrique des ceintures algales observées en 2022. La Vigie 2 : Distribution bathymétrique des ceintures algales entre 2016 et 2022. La Vigie 2 : Distribution bathymétrique relevé en 2011 et limite de ceintures algales observées en 2022. La Vigie 2 : Composition de la strate arbustive dans l'infralittoral supérieur entre 2016 et 2022 mesurée sur 5 ou 10 quadrats selon la bathymétrie. Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022. Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022. Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022. Phare des Baleines : Evolution des ceintures algales entre 2014 et 2022. Phare des Baleines : Evolution des fréquences d'occurrence des algues entre 2014 et 2022. Phare des Baleines : Aplysia EQR des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristique» « des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristique» « des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristique» « des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristique» « des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristique» « des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Métrique « Espèces caractéristique» « des sites suivis en 2016, 2019 (2020) et 2022 en Loire-Bretagne Estran de Port Pouquet Estran de	174 174 175 176 177 178 179 180 181 181 182 183 183 193 193 193 193 199 200 200 200 202 202 202 203 204 205 206 207 208

Fig. 1	47 :	Pointe	du Paon : EQR et notes des métriques en 2016, 2019 et 2022	21
Fig. 1	48:	Pointe	du Paon : Métrique « composition spécifique » en 2016, 2019 et 2022	21:
Fig. 1	50 :	He Ro	nde : EQR et notes des métriques en 2016, 2019 et 2022 nde : Métrique « composition spécifique » en 2016, 2019 et 2022	21
Fig. 1	51:	Pointe	du Van: EQR et notes des métriques en 2016, 2019 et 2022	21
Fig. 1	52:	Pointe	du Van: Métrique « composition spécifique » en 2016, 2019 et 2022	21
Fig. 1	53:	lle de	l'Aber : EQR et notes des métriques en 2016, 2019 et 2022 l'Aber : Métrique « composition spécifique » en 2016, 2019 et 2022	220
Fig. 1	55 :	Gaoua	c'h : EQR et notes des métriques en 2016, 2019 et 2022	22
Fig. 1	56:	Gaoua	c'h : Métrique « composition spécifique » en 2016, 2019 et 2022	22
Fig. 1	57 :	La Vig	gie : EQR et notes des métriques en 2016, 2020 et 2022	22
Fig. 1	58:	La Vig	gie : Métrique « composition spécifique » en 2016, 2020 et 2022	22
Fig. 1	159 : 160 ·	Phare	des Baleines : EQR et notes des métriques en 2016, 2020 et 2022 des Baleines : Métrique « composition spécifique » en 2016, 2020 et 2022	22
—— List	te d	les ta	<u>lbleaux</u>	
Tabl.	1:2	2022 : F	Points d'échantillonnage des sites « Malban, Molène, Fort Bloqué, Belle-Ile, Pénerf, Croisic et Grouin » des roches intertidales	16
Tabl.	$\frac{2}{3}:2$	2022 . I 2022 : F	Points d'échantillonnage du site « L'Herbaudière » des roches intertidales	18
Tabl.	4:2	2022 : I	Points d'échantillonnage du site « Sabias » des roches intertidales	19
Tabl.	5:2	2022 : I	Points d'échantillonnage du site « La Sauzaie » des roches intertidales	20
Tabl.	6:2	2022 : I	Echantillonnage des sites Flore des roches intertidales	21
Tabi. Tabi	8 . 1	2022 : 1 2022 : 1	Malban - Surface et Recouvrement au printemps	21
Tabl.	9:2	2022 . 1 2022 : N	Malban - Ceinture à Fucus spiralis au printemps	22
Tabl.	10:	2022 :	Malban - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps	22
Tabl.	11:	2022:	Malban - Ceinture à Fucus serratus au printemps	23
Tabl.	12:	2022 :	Malban - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps	23
1 abl. Tabl	13:	2022:	Malban - Ceinture à <i>Laminaria digitata</i> au printemps Malban - Surface et Recouvrement à l'automne	23
Tabl.	15:	2022 :	Malban - Ceinture à Pelvetia canaliculata à l'automne	24
Tabl.	16:	2022:	Malban - Ceinture à Fucus spiralis à l'automne	24
Tabl.	17:	2022:	Malban - Ceinture à Ascophyllum nodosum / Fucus vesiculosus à l'automne	24
Tabl.	18:	2022 :	Malban - Ceinture à Fucus serratus à l'automne	25
Tabi.	19:	2022:	Malban - Ceinture à <i>Himanthalia elongata Bifurcaria bifurcata</i> à l'automne Malban - Ceinture à <i>Laminaria digitata</i> à l'automne	25
Tabl.	21:	2022 :	Molène - Surface et Recouvrement au printemps	26
Tabl.	22:	2022:	Molène - Ceinture à <i>Pelvetia canaliculata</i> au printemps	26
Tabl.	23:	2022 :	Molène - Ceinture à Fucus spiralis au printemps	26
Tabl.	24:	2022:	Molène - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps Molène - Ceinture à Fucus serratus au printemps	27
Tabi. Tabl	26 ·	2022 .	Molène - Ceinture à <i>Fituas serratus</i> au printemps Molène - Ceinture à <i>Himanthalia elongata Bifurcaria bifurcata</i> au printemps	27
Tabl.	27:	2022 :	Molène - Ceinture à <i>Laminaria digitata</i> au printemps	28
Tabl.	28:	2022:	Molène - Surface et Recouvrement à l'automne	28
Tabl.	29:	2022 :	Molène - Ceinture à Pelvetia canaliculata à l'automne	28
Tabi.	30:	2022:	Molène - Ceinture à Fucus spiralis à l'automne Molène - Ceinture à Ascophyllum nodosum à l'automne	28
Tabl.	32:	2022 :	Molène - Ceinture à Fucus serratus à l'automne	29
Tabl.	33:	2022:	Molène - Ceinture à Himanthalia elongata / Bifurcaria bifurcata à l'automne	29
Tabl.	34:	2022 :	Molène - Ceinture à Laminaria digitata à l'automne	30
Tabl.	35:	2022:	Keragan - Surface et Recouvrement au printemps Keragan - Ceinture à Fucus spiralis au printemps	31
Tabl.	37:	2022 :	Keragan - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps	31
Tabl.	38:	2022:	Keragan - Ceinture à Fucus serratus au printemps	31
Tabl.	39 :	2022 :	Keragan - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps	32
Tabl.	40:	2022 :	Keragan - Ceinture à Laminaria digitata au printemps	32
1 abi. Tabl	41:	2022 :	Keragan - Surface et Recouvrement à l'automne Keragan - Ceinture à <i>Fucus spiralis</i> à l'automne	32
Tabl.	43:	2022 :	Keragan - Ceinture à Ascophyllum nodosum à l'automne	32
Tabl.	44:	2022:	Keragan - Ceinture à Fucus serratus à l'automne	33
Tabl.	45:	2022:	Keragan - Ceinture à Himanthalia elongata à l'automne	33
Tabl.	46:	2022:	Keragan - Ceinture à Laminaria digitata à l'automne Belle-Ile - Surface et Recouvrement au printemps	33
Tabl	48 ·	2022 :	Belle-Ile - Ceinture à Pelvetia canaliculata à l'automne	34
Tabl.	49:	2022:	Belle-Ile - Ceinture à Fucus spiralis au printemps	34
Tabl.	50:	2022:	Belle-Ile - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps	35
Tabl.	51:	2022 :	Belle-Ile - Ceinture à Fucus serratus au printemps	35
Tabi.	52:	2022:	Belle-Ile - Ceinture à <i>Himanthalia elongata Bifurcaria bifurcata</i> au printemps Pénerf - Surface et Recouvrement au printemps	<u>35</u>
			Pénerf - Ceinture à <i>Pelvetia canaliculata</i> à l'automne	
Tabl.	55:	2022:	Pénerf - Ceinture à Fucus spiralis au printemps	36
Tabl.	56:	2022:	Pénerf - Ceinture à Ascophyllum nodosum au printemps	37
Tabl.	57:	2022:	Pénerf - Ceinture à Fucus serratus au printemps	37
1 abi. Tabi	58:	2022 :	Pénerf - Ceinture à <i>Himanthalia elongata</i> au printemps Pénerf - Surface et Recouvrement à l'automne	37
Tabl.	60:	2022:	Pénerf - Ceinture à Pelvetia canaliculata à l'automne	38
Tabl.	61:	2022:	Pénerf - Ceinture à Fucus spiralis à l'automne	38
Tabl.	62:	2022:	Pénerf - Ceinture à Ascophyllum nodosum à l'automne	38
Tabl.	63:	2022 :	Pénerf - Ceinture à Fucus serratus à l'automne	38
rabi. Tabi	65 ·	2022:	Pénerf - Ceinture à <i>Himanthalia elongata</i> à l'automne_ Le Croisic - Surface et Recouvrement au printemps	38 30
Tabl.	66:	2022:	Le Croisic - Ceinture à Pelvetia canaliculata au printemps_	39
Tabl.	67 :	2022:	Le Croisic - Ceinture à Fucus spiralis au printemps	39
Tabl.	68:	2022:	Le Croisic - Ceinture à Ascophyllum nodosum au printemps	40
Tabl.	69:	2022:	Le Croisic - Ceinture à Fucus serratus au printemps Le Croisic - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps	40
raoi. Tabl	71 ·	2022 :	Le Croisic - Ceinture à <i>Himannatia etongata i Bijurcaria bijurcata</i> au printemps Le Croisic - Ceinture à <i>Laminaria digitata</i> au printemps	40
Tabl.	72 :	2022 :	Le Croisic - Surface et Recouvrement à l'automne	41
Tabl.	73:	2022 :	Le Croisic - Ceinture à Pelvetia canaliculata à l'automne	41

Tabl.	74:	: 2022 : Le Croisic - Ceinture à <i>Fucus spiralis</i> à l'automne : 2022 : Le Croisic - Ceinture à <i>Ascophyllum nodosum</i> à l'automne	41
Tabl.	76 :	5 : 2022 : Le Croisic - Ceinture à <i>Fucus serratus</i> à l'automne	41
Tabl.	77 :	s : 2022 : Le Croisic - Ceinture à <i>Fucus serratus</i> à l'automne_ l' : 2022 : Le Croisic - Ceinture à <i>Himanthalia elongata Bifurcaria bifurcata</i> à l'automne	42
Tabl.	78 :	s : 2022 : Le Croisic - Ceinture à <i>Laminaria digitata</i> à l'automne s : 2022 : Pte St Gildas - Surface et Recouvrement au printemps	42
Tabl.	80:	0 : 2022 : Pte St Gildas – Ceinture à <i>Pelvetia canaliculata</i> au printemps	44
Tabl.	81:	: 2022 : Pte St Gildas – Ceinture à <i>Fucus spiralis</i> au printemps	44
Tabl.	82 : 83 :	: 2022 : Pte St Gildas – Ceinture à <i>Ascophyllum nodosum</i> au printemps : 2022 : Pte St Gildas – Ceinture à <i>Fucus serratus</i> au printemps	44
Tabl.	84:	: 2022 : Pte St Gildas – Ceinture à <i>Himanthalia elongata</i> au printemps	45
Tabl.	85 :	: 2022 : Pte St Gildas – Ceinture à <i>Osmundea pinnatifida</i> au printemps : 2022 : Pte St Gildas – Surface et Recouvrement à l'automne	45
Tabl.	87 :	' : 2022 : Pte St Gildas – Suriace et Reconvicinent à l'automne : ' : 2022 : Pte St Gildas – Ceinture à <i>Pelvetia canaliculata</i> à l'automne :	46
Tabl.	88:	3 : 2022 : Pte St Gildas – Ceinture à <i>Fucus spiralis</i> à l'automne	47
Tabl.	89:): 2022 : Pte St Gildas – Ceinture à <i>Ascophyllum nodosum</i> à l'automne): 2022 : Pte St Gildas – Ceinture à <i>Fucus serratus</i> à l'automne	47
Tabl.	91:	: 2022 : Pte St Gildas – Ceinture à <i>Himanthalia elongata</i> à l'automne	48
Tabl.	92:	2 : 2022 : Pte St Gildas – Ceinture à <i>Laminaria digitata</i> à l'automne	48-49
Tabl.	93:	: 2022 : L'Herbaudière - Surface et Recouvrement au printemps : 2022 : L'Herbaudière – Ceinture à <i>Pelvetia canaliculata</i> au printemps	49 50
Tabl.	95:	: 2022 : L'Herbaudière – Ceinture à <i>Fucus spiralis</i> au printemps	50
Tabl.	96:	o : 2022 : L'Herbaudière – Ceinture à Ascophyllum nodosum au printemps	50
Tabl.	97 : 98 ·	' : 2022 : L'Herbaudière – Ceinture à <i>Fucus serratus</i> au printemps : 2022 : L'Herbaudière – Ceinture à <i>Laminaria digitata</i> au printemps	51 51
Tabl.	99:	2 : 2022 : L'Herbaudière – Surface et Recouvrement à l'automne	52
Tabl.	100	00 : 2022 : L'Herbaudière – Ceinture à <i>Pelvetia canaliculata</i> à l'automne	53
Tabl.	101	01 : 2022 : L'Herbaudière – Ceinture à <i>Fucus spiralis</i> à l'automne 12 : 2022 : L'Herbaudière – Ceinture à <i>Ascophyllum nodosum</i> à l'automne	53 53
Tabl.	103	33 : 2022 : L'Herbaudière – Ceinture à <i>Fucus serratus</i> à l'automne	54
Tabl.	104	14: 2022: L'Herbaudière – Ceinture à <i>Laminaria digitata</i> à l'automne	54
Tabl.	105	15 : 2022 : Sabias - Surface et Recouvrement au printemps 16 : 2022 : Sabias – Ceinture à <i>Pelvetia canaliculata</i> au printemps	<u>55</u> 56
Tabl.	107	77 : 2022 : Sabias – Ceinture à <i>Fucus spiralis</i> au printemps	56
Tabl.	108	8 : 2022 : Sabias – Ceinture à Ascophyllum nodosum au printemps	56
Tabl.	110	19 : 2022 : Sabias – Ceinture à <i>Fucus serratus</i> au printemps 0 : 2022 : Sabias - Ceinture à <i>Himanthalia elongata / Bifurcaria bifurcata</i> au printemps	
Tabl.	111	1: 2022: Sabias – Surface et Recouvrement à l'automne	58
Tabl.	112	2 : 2022 : Sabias – Ceinture à <i>Pelvetia canaliculata</i> à l'automne 3 : 2022 : Sabias – Ceinture à <i>Fucus spiralis</i> à l'automne	<u>58</u>
Tabl.	114	4 : 2022 : Sabias – Ceinture à Ascophyllum nodosum à l'automne	59
Tabl.	115	5 : 2022 : Sabias – Ceinture à Fucus serratus à l'automne	59-60
Tabl.	116	6 : 2022 : Sabias - Ceinture à <i>Himanthalia elongata Bifurcaria bifurcata</i> à l'automne 7 : 2022 : Sabias – Ceinture à <i>Laminaria digitata</i> à l'automne	60 60-61
Tabl.	118	8: 2022: La Sauzaie – Surface et Recouvrement au printemps	62
Tabl	119	9: 2022: La Sauzaje - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps	(2
			0.3
Tabl.	120 121	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64
Tabl. Tabl. Tabl.	120 121 122	10 : 2022 : La Sauzaie - Ceinture à <i>Fucus serratus</i> au printemps 11 : 2022 : La Sauzaie - Ceinture à <i>Himanthalia elongata Bifurcaria bifurcata</i> au printemps 12 : 2022 : La Sauzaie – Surface et Recouvrement à l'automne	63 63-64 64
Tabl. Tabl. Tabl. Tabl.	120 121 122 123	0 : 2022 : La Sauzaie - Ceinture à <i>Fucus serratus</i> au printemps 11 : 2022 : La Sauzaie - Ceinture à <i>Himanthalia elongata / Bifurcaria bifurcata</i> au printemps 22 : 2022 : La Sauzaie - Surface et Recouvrement à l'automne 33 : 2022 : La Sauzaie - Ceinture à <i>Ascophyllum nodosum</i> à l'automne	63 63-64 64 65
Tabl. Tabl. Tabl. Tabl. Tabl.	120 121 122 123 124	0 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 11 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata Bifurcaria bifurcata au printemps 22 : 2022 : La Sauzaie - Surface et Recouvrement à l'automne 23 : 2022 : La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 4 :	63 63-64 64 65 65
Tabl. Tabl. Tabl. Tabl. Tabl. Tabl. Tabl.	120 121 122 123 124 125 126	20 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70
Tabl. Tabl. Tabl. Tabl. Tabl. Tabl. Tabl. Tabl.	120 121 122 123 124 125 126 127	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 11 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps 12 : 2022 : La Sauzaie - Surface et Recouvrement à l'automne 13 : 2022 : La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne 14 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 15 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata à l'automne 16 : Ceintures algales au site du Grouin NE Loix (île de Ré) 17 : Station Grouin NE Loix (Île de Ré) 18 18 18 18 18 18 18 1	63 63-64 64 65 65 65-66 768-69-70
Tabl.	120 121 122 123 124 125 126 127 128	20 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 70
Tabl.	120 121 122 123 124 125 126 127 128 129 130	20 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 70 71 72
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 11 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata Bifurcaria bifurcata au printemps 12 : 2022 : La Sauzaie - Surface et Recouvrement à l'automne 13 : 2022 : La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne 14 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 15 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 16 : Ceintures algales au site du Grouin NE Loix (île de Ré) 17 : Station Grouin NE Loix (lle de Ré) 18 : Grouin NE - Surface et couverture végétale globale des ceintures algales aux deux saisons 19 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fspi aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fspi aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons	63 63-64 64 65 65 65-66 768-69-70 70 71 72 18 72 aisons 73
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131	20 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 70 71 72 18 72 aisons 73
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	20: 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 71 72 18 72 aisons 73 18 74 isons 75
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 70 71 72 72 73 73 74 15ons 75
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135	20: 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 70 71 72 18 72 18 72 18 73 18 74 18 75
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137	20: 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 71 72 18 72 aisons 73 18 74 isons 75 76 77
Tabl.	120 121 122 123 124 125 126 127 128 130 131 132 133 134 eux 135 136 137 138 139	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 12 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps 12 : 2022 : La Sauzaie - Surface et Recouvrement à l'automne 13 : 2022 : La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne 14 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 15 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata à l'automne 16 : Ceinture au site du Grouin NE Loix (île de Ré) 17 : Station Grouin NE Loix (Île de Ré) 18 : Grouin NE - Surface et couverture végétale globale des ceintures algales aux deux saisons 19 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pc aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saison 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saison 12 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saison 13 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saison 13 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Al-Fves aux deux saison 13 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Al-Fves aux deux saison 14 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Al-Fves aux deux saison 15 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Al-Fves aux deux saison 15 : Grouin NE - Couverture par quadrat et couve	63 63-64 64 65 65 65-66 708-69-70 71 72 aisons 73 as 74 isons 75 76 77 80 80 80 81
Tabl.	120 121 122 123 124 125 126 127 128 130 131 132 133 134 eux 135 136 137 138 139 140	20: 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 708-69-70 71 72 85 72 aisons 73 aisons 75 76 77 80 80 80 80 81 81
Tabl.	120 121 122 123 124 125 126 127 128 130 131 132 133 134 eux 135 136 137 138 139 140	20: 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65 65-66 768-69-70 71 72 72 73 73 74 75 76 77 80 80 80 81 81
Tabl.	120 121 122 123 124 125 126 127 128 130 131 132 133 134 eux 135 136 137 138 140 141 142	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps 12 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata Bifurcaria bifurcata au printemps 12 : 2022 : La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne 13 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 14 : 2022 : La Sauzaie - Ceinture à Fucus serratus à l'automne 15 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata à l'automne 16 : Ceintures algales au site du Grouin NE Loix (île de Ré) 17 : Station Grouin NE Loix (île de Ré) 18 : Grouin NE - Surface et couverture végétale globale des ceintures algales aux deux saisons 19 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pc aux deux saisons 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisor 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisor 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisor 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisor 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisors 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisors 10 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Aldlaminaires x saisons 10 : Grouin NE - Couverture algale au printemps 10 : 2022 : GCO8 - CCO/Couverture algale au printemps 10 : 2022 : GCO8 - CCO/Espèces caractéristiques à l'automne 10 : 2022 : GCO8 - C	63 63-64 64 65 65 65 65-66 768-69-70 71 72 18 72 18 72 18 74 18 75 76 77 80 80 80 81 81 81
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 138 140 141 142 143 144	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65 65-66 70 70 71 72 aisons 73 as 74 isons 75 76 77 80 80 80 81 81 81 81 81 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 140 141 141 142 143 144	10 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps	63 63-64 64 65 65 65 65-66 708-69-70 70 71 72 88 73 85 75 76 77 80 80 80 80 81 81 81 81 81 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 138 140 141 142 143 144 145 146 147	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65 65-66 768-69-70 71 72 18 72 18 72 18 73 18 74 18 18 75 76 80 80 81 81 81 81 81 81 82 82 82 82 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 138 139 140 141 142 143 144 144 145 146 147 148	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65-66 768-69-70 70 71 72 aisons 73 as 74 isons 75 76 77 80 80 80 81 81 81 81 81 81 82 82 82 82 82 82 83
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 138 140 141 142 143 144 145 146 147 148 149	10 : 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65 65-66 708-69-70 71 72 85 72 asisons 73 as. 74 isons 75 76 77 80 80 80 81 81 81 81 81 81 82 82 82 82 82 83 83
Tabl.	120 121 122 123 124 125 126 127 128 139 130 131 132 133 134 eux 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 159 150 151	10 : 2022 : La Sauzaie - Ceinture à <i>Himanthalia elongata</i> <i>Bifurcaria bifurcata</i> au printemps	63 63-64 64 65 65 65 65-66 768-69-70 71 72 18 72 18 72 18 74 18 18 75 76 77 80 80 80 81 81 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 83 83 83 83 84
Tabl.	120 121 121 122 123 124 125 126 127 128 130 131 132 133 134 eux 135 136 137 138 140 141 142 143 144 145 146 147 148 151 151	10. 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65 65-66 768-69-70 71 72 aisons 73 ais 74 isons 75 76 77 80 80 80 81 81 81 81 81 81 82 82 82 82 82 82 82 82 82 83 83 83 84 84
Tabl.	120 121 122 123 124 125 126 127 128 130 131 132 133 134 eux 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 151	10. 2022 : La Sauzaie - Ceinture à Fucus serratus au printemps	63 63-64 64 65 65 65 65-66 708-69-70 71 72 72 aisons 73 as 74 isons 75 76 77 80 80 80 81 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 137 141 142 143 144 145 146 147 151 152 153 154	10. 2022 La Sauzaie - Ceinture à Himanthalia elongata I Bifurcaria bifurcata au printemps	63 63-64 64 65 65 65 65-66 768-69-70 70 71 72 18 72 18 72 18 74 18 18 74 18 18 18 80 80 80 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 133 134 eux 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 158 158 158 158 158 158 158	10. 2022 La Sauzaie - Ceinture à Himanthalia elongata la Bifurcaria bifurcata au printemps	63 63-64 64 65 65 65 65-66 768-69-70 70 71 72 as 72 aisons 73 as 74 isons 75 76 77 80 80 80 81 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 138 140 141 142 143 144 145 150 151 151 153 154 155 156	0. 2022: La Sauzaie - Ceinture à Humanhalia elongata l'Bijurcata au printemps. 1. 2022: La Sauzaie - Surface et Recouvrement à l'autonne. 2. 2022: La Sauzaie - Ceinture à Humanhalia elongata à l'autonne. 3. 2022: La Sauzaie - Ceinture à Humanhalia elongata à l'autonne. 4. 2022: La Sauzaie - Ceinture à Humanhalia elongata à l'autonne. 5. 2022: La Sauzaie - Ceinture à Humanhalia elongata à l'autonne. 6. Ceintures algales au site du Grouin NE Loix (file de Ré). 7. Station Grouin NE Loix (lle de Ré) IR. 8. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pe aux deux saisons. 9. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pe aux deux saisons. 10. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pe aux deux saisons. 10. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons. 12. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons. 12. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons. 13. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Ber aux deux saisons. 14. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Ber aux deux saisons. 15. Nombre d'espèces recensées à Grouin par ceinture algale sur roches. 16. 2002: GOOS – COO/Couverture algale au printemps. 17. 2002: GOOS – COO/Couverture algale au printemps. 18. 2002: GOOS – COO/Couverture algale à u printemps. 19. 2002: GOOS – COO/Couverture algale à u printemps. 19. 2002: GOOS – COO/Couverture algale à l'autonne. 19. 2002: GO	63 63-64 64 65 65 65 65-66 70 70 71 72 aisons 73 as 74 aisons 75 76 77 80 80 80 81 81 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 141 142 143 144 145 146 151 152 153 154 155 156 157 158	0. 2002: La Sauzaie - Ceinture à Fueus serratus au printemps. 1. 2002: La Sauzaie - Surface et Recouvrement à l'autonne. 2. 2002: La Sauzaie - Ceinture à Himanthalia elongata l'autonne. 3. 2002: La Sauzaie - Ceinture à Ascophyllum nodosum à l'autonne. 4. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 5. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 6. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 7. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 8. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 8. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 9. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 9. 3. 2002: La Sauzaie - Ceinture à Himanthalia elongata à l'autonne. 9. 4. 3. 2002: La Sauzaie - Ceinture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pe aux deux saisons ou Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pspi aux deux saison il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pspi aux deux saison il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Ne aux deux saisons deux saisons deux deux deux saisons deux deux deux deux deux deux deux deux	63 63-64 64 65 65 65 65-66 70 70 71 72 18 72 18 72 18 19 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 141 142 143 144 145 151 152 153 154 155 156 157 158	0. 2022: La Sauzaie - Ceinture à Fucus serratus au printemps. 1. 2022: La Sauzaie - Surface et Recouvrement à l'automne. 3. 2022: La Sauzaie - Surface et Recouvrement à l'automne. 4. 2022: La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne. 5. 2022: La Sauzaie - Ceinture à Himanthalia elongata l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 7. Station Grouin NE Loix (Ile de Rè) IR. 8. Grouin NE - Surface et couverture végétale globale des ceintures algales aux deux saisons. 9. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pe aux deux saisons or Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fsei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fsei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fsei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Psei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture le Psei aux deux saisons de Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture à Ld/laminaires xusaisons. 5. Nombre d'espèces recensées à Grouin par ceinture algale sur roches. 6. 2022: GCO8 - CCO/Couverture algale au printemps. 7. 2022: GCO8 - CCO/Couverture algale à l'automne. 8. 2022: GCO8 - CCO/Cispèces caractéristiques à l'automne. 9. 2022: GCO8 - CCO/Cispèces caractéristiques à l'automne. 9. 2	63 63-64 64 65 65 65 65-66 768-69-70 70 71 72 18 72 18 72 18 74 18 18 1 80 80 80 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 140 141 142 143 144 145 150 151 152 153 154 155 156 157 158 159 169 179 179 179 179 179 179 179 179 179 17	0. 2002: La Sauzaie - Ceinture à Fueus serratus au printemps. 1 2002: La Sauzaie - Surface et Recouvrement à l'autonne. 3 2002: La Sauzaie - Surface et Recouvrement à l'autonne. 4 2002: La Sauzaie - Ceinture à Ascophyllum nodosum à l'autonne. 5 2002: La Sauzaie - Ceinture à Fueus serratus à l'autonne. 6 2002: La Sauzaie - Ceinture à Fueus serratus à l'autonne. 7 2012: La Sauzaie - Ceinture à Fueus serratus à l'autonne. 8 2002: La Sauzaie - Ceinture à Fueus serratus à l'autonne. 9 2002: La Sauzaie - Ceinture à Fueus serratus à l'autonne. 9 2016: Ceintures algales au site du Grouin NE Loix (lie de Ré). 9 2016: Ceintures algales au site du Grouin NE Loix (lie de Ré). 9 2016: Ceintures algales au site du Grouin NE Loix (lie de Ré). 9 2016: Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Peaux deux saison (sonin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques de la ceinture Peaux deux saison (sonin NE - Couverture algale à l'automne (sonin NE - Cou	63 63-64 64 65 65 65 65-66 70 70 71 72 38 72 aisons 73 as 74 isons 75
Tabl.	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 eux 135 136 137 138 139 141 142 143 144 145 151 152 153 154 155 156 157 158 159 160 161 162 163 163 164 165 166 166 167 168 168 168 168 168 168 168 168 168 168	0. 2022: La Sauzaie - Ceinture à Fucus serratus au printemps. 1. 2022: La Sauzaie - Surface et Recouvrement à l'automne. 3. 2022: La Sauzaie - Surface et Recouvrement à l'automne. 4. 2022: La Sauzaie - Ceinture à Ascophyllum nodosum à l'automne. 5. 2022: La Sauzaie - Ceinture à Himanthalia elongata l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 6. 2022: La Sauzaie - Ceinture à Himanthalia elongata à l'automne. 7. Station Grouin NE Loix (Ile de Rè) IR. 8. Grouin NE - Surface et couverture végétale globale des ceintures algales aux deux saisons. 9. Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pe aux deux saisons or Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fsei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fsei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fsei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Psei aux deux saisons il Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture le Psei aux deux saisons de Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture à Ld/laminaires xusaisons. 5. Nombre d'espèces recensées à Grouin par ceinture algale sur roches. 6. 2022: GCO8 - CCO/Couverture algale au printemps. 7. 2022: GCO8 - CCO/Couverture algale à l'automne. 8. 2022: GCO8 - CCO/Cispèces caractéristiques à l'automne. 9. 2022: GCO8 - CCO/Cispèces caractéristiques à l'automne. 9. 2	63 63-64 64 65 65-65 65-66 708-69-70 71 72 88 72 88 75 76 77 80 80 80 81 81 81 81 81 81 82 82 82 82 83 83 83 83 84 84 84 84 84 85 85 85 85 86 86 86 86 87 87

Tabl	. 165	2022 : GC45 – CCO/Espèces opportunistes au printemps	88
Tabl	. 166 :	2022 : GC45 – CCO/Couverture algale à l'automne 2022 : GC45 – CCO/Espèces caractéristiques à l'automne	88
Tabl	. 168 :	2022 : GC45 – CCO/Espèces opportunistes à l'automne	89
Tabl Tabl	. 169 : - 170 :	2022 : GC46/1 – CCO/Couverture algale au printemps 2022 : GC46/1 – CCO/Espèces caractéristiques au printemps	89 89
Tabl	. 171 :	2022 : GC46/1 – CCO/Espèces opportunistes au printemps	90
Tabl	172	2022 : GC46/1 – CCO/Couverture algale à l'automne 2022 : GC46/1 – CCO/Espèces caractéristiques à l'automne	90
Tabl	. 174 :	2022 : GC46/1 – CCO/Espèces opportunistes à l'automne	90
Tabl	. 175	2022 : GC46/2 – CCO/Couverture algale au printemps	91
Tabl	. 177 :	2022 : GC46/2 – CCO/Espèces caractéristiques au printemps 2022 : GC46/2 – CCO/Espèces opportunistes au printemps	91
Tabl	. 178	2022 : GC46/2 – CCO/Couverture algale à l'automne	91
Tabl Tabl	. 179 : 180 :	2022 : GC46/2 – CCO/Espèces caractéristiques à l'automne 2022 : GC46/2 – CCO/Espèces opportunistes à l'automne	92 92
Tabl	. 181 :	2022 : GC47 – CCO/Couverture algale au printemps	92
Tabl	. 182 :	2022 : GC47 – CCO/Espèces caractéristiques au printemps	92
Tabl	. 185 : . 184 :	2022 : GC47 – CCO/Espèces opportunistes au printemps 2022 : GC47 – CCO/Couverture algale à l'automne	93
Tabl	. 185	2022 : GC47 – CCO/Espèces caractéristiques à l'automne	93
Tabl	186	2022 : GC47 – CCO/Espèces opportunistes à l'automne 2022 : GC50 – CCO/Couverture algale au printemps	93
Tabl	. 188	2022 : GC50 – CCO/Espèces caractéristiques au printemps	94
Tabl	. 189 :	2022 : GC50 – CCO/Espèces opportunistes au printemps	94
Tabl	. 190 : 191 :	2022 : GC50 – CCO/Couverture algale à l'automne 2022 : GC50 – CCO/Espèces caractéristiques à l'automne	95 95
Tabl	. 192 :	2022 : GC50 – CCO/Espèces opportunistes à l'automne	95
Tabl	. 193	2022 : GC53 – CCO/Couverture algale au printemps	95
Tabl	. 194 :	2022 : GC53 – CCO/Espèces caractéristiques au printemps. 2022 : GC53 – CCO/Espèces opportunistes au printemps.	96 96
Tabl	. 196 :	2022 : GC53 – CCO/Couverture algale à l'automne	96
Tabl	197	2022 : GC53 – CCO/Espèces caractéristiques à l'automne 2022 : GC53 – CCO/Espèces opportunistes à l'automne	96
Tabl	. 199 :	Malban: Notations au printemps et à l'automne 2022	97
Tabl	. 200 :	Molène : Notations au printemps et à l'automne 2022	98
Tabl	. 201 :	Keragan : Notations au printemps et à l'automne 2022 Pénerf : Notations au printemps et à l'automne 2022	9 <u>9</u> 100
Tabl	203	Le Croisic : Notations au printemps et à l'automne 2022	101
Tabl	. 204 :	Pte St Gildas : Notations au printemps et à l'automne 2022	102
Tabl	. 205 :	Sabias : Notations au printemps et à l'automne 2022	103
Tabl	. 207 :	La Sauzaie: Notations au printemps et à l'automne 2022	105
Tabl	208 :	Grouin NE : Notations au printemps et à l'automne 2022 Evolution du CCO de 2007 à 2022 pour les 11 sites de surveillance	106
Tabl	. 210 :	Malban: Evolution saisonnière du CCO de 2007 à 2022	107
Tabl	. 211 :	Molène : Evolution saisonnière du CCO de 2007 à 2022	108
Tabl	. 212 :	Keragan : Evolution saisonnière du CCO de 2013 et 2022 Pénerf : Evolution saisonnière du CCO de 2013 et 2022	110
Tabl	. 214 :	Molène : Evolution saisonnière du CCO de 2007 à 2022	110
Tabl	215	Pte St Gildas : Evolution saisonnière du CCO de 2010 à 2022 L'Herbaudière : Evolution saisonnière du CCO de 2010 à 2022	112
Tabl	. 217 :	Sabias : Evolution saisonnière du CCO de 2010 à 2022	112
Tabl	. 218 :	La Sauzaie : Evolution saisonnière du CCO de 2010 à 2022	112
		Grouin NE : Evolution saisonnière du CCO de 2007 à 2022 Evolution temporelle des notations des sites relevés de 2010 à 2022	
Tabl	. 221	2022 : Points d'échantillonnage des sites Flore des vases intertidales	122
Tabl	. 222 :	2022 : Echantillonnage des sites Flore des vases intertidales 2022 : Résultats de l'indice ABER des MET et comparaison avec les relevés 2016 et 2019	122
Tabl	224	2022 : Points GPS des têtes de transects des sites subtidaux rocheux_	129
Tabl	. 225 :	2022 : Echantillonnage des sites des roches subtidales	129
Tabl	. 226 :	Pointe du Paon : Notation de la métrique « extension en profondeur des ceintures algales » Pointe du Paon : Notation de la métrique « densité »	131
Tabl	. 228 :	Pointe du Paon : Notation de la métrique « composition spécifique »	132
Tabl	229 :	Pointe du Paon : Notation de la métrique « richesse spécifique algues »	133
Tabl	231	Pointe du Paon : Notation de la métrique « Stipes »_ Pointe du Paon (GC07) : Evolution de l'état de santé du site depuis 2007 selon l'indicateur macroalgues subtidales	133
Tabl	. 232 :	Moguedhier: Notation de la métrique « extension en profondeur des ceintures algales »	138
Tabl	. 233 : . 234 :	Moguedhier : Notation de la métrique « densité » Moguedhier : Notation de la métrique « composition spécifique »	138 139
Tabl	. 235 :	Moguedhier: Notation de la métrique « richesse spécifique algues »	140
Tabl	. 236	Moguedhier (GC07): Evolution de l'état de santé du site depuis 2007 selon l'indicateur macroalgues subtidales Ile Ronde: Notation de la métrique « extension en profondeur des ceintures algales »	143
Tabl	. 238 :	Ile Ronde : Notation de la métrique « extension en profondeur des centures algaies »	145
Tabl	. 239 :	Ile Ronde : Notation de la métrique « composition spécifique »	146
Tabl Tabl	. 240 : 241 :	Ile Ronde : Notation de la métrique « richesse spécifique algues »	147 150
Tabl	. 242	Pointe du Van : Notation de la métrique « extension en profondeur des ceintures algales »	152
Tabl	. 243 :	Pointe du Van : Notation de la métrique « densité »	152
Tabl	. 244 : . 245 :	Pointe du Van : Notation de la métrique « composition spécifique » Pointe du Van : Notation de la métrique « richesse spécifique algues »	152 153
Tabl	. 246 :	Pointe du Van : Notation de la métrique « Stipes »	154
Tabl	. 247 :	Pointe du Van (GC18) : Evolution de l'état de santé du site depuis 2008 selon l'indicateur macroalgues subtidales	156
Tabl	249	lle de l'Aber : Notation de la métrique « extension en profondeur des ceintures aigaies »	158
Tabl	. 250 :	Ile de l'Aber : Notation de la métrique « composition spécifique	158
Tabl Tabl	. 251 . 252	Ile de l'Aber : Notation de la métrique « richesse spécifique algues » Ile de l'Aber (GC20) : Evolution de l'état de santé du site depuis 2008 selon l'indicateur macroalgues subtidales	159 161
Tabl	. 253	Gaouac'h : Relevé de la strate arbustive à -3m5.5m8.8m sur 5 guadrats « O- »	162
Tabl	254	Gaouac'h : Liste des espèces floristiques répertoriées dans l'infralittoral supérieur Gaouac'h : Liste des espèces faunistiques répertoriées dans l'infralittoral supérieur	163
1 aul	. 233	Gaouac'h : Liste des espèces floristiques répertoriées dans le circalittoral côtier	104

Tabl. 257 : Gaouac'h : Liste des espèces faunistiques répertoriées dans le circalittoral côtier	165-166
	167
Tabl. 259 : Gaouac'h (GC26) : Etat de santé du site selon l'indicateur macroalgues subtidales	168
	169
	172
Tabl. 262 : La Vigie 1 : Liste des espèces floristiques répertoriées dans l'infralittoral supérieur	177
Tabl. 263 : La Vigie 1 : Liste des espèces faunistiques répertoriées dans l'infralittoral supérieur	178
Tabl. 264 : La Vigie 2 : Relevé de la strate arbustive sur les quadrats « Q- » supplémentaires	179
Tabl. 265 : La Vigie 2 (GC50) : Etat de santé du site selon l'indicateur macroalgues subtidales	180
Tabl. 266 : Phare des Baleines : Relevé de la strate arbustive sur les quadrats « Q- » supplémentaires	182
Tabl. 267 : Phare des Baleines : Liste des espèces floristiques répertoriées dans l'infralittoral supérieur	185
Tabl. 268 : Phare des Baleines : Liste des espèces faunistiques répertoriées dans l'infralittoral supérieur	186
Tabl. 269 : Phare des Baleines (GC52) : Etat de santé du site selon l'indicateur macroalgues subtidales (hors RCS)	186
	188
	188
	189
Tabl. 273 : 2017-2022 : Evaluation des MEC via les Macroalgues Intertidales	189
	190
Tabl. 275 : Sites prospectés dans la masse d'eau côtière GC42 « Belle-Ile » (en bleu)	197

Présentation des acteurs

Coordination "DCE-Benthos – Macroalgues Fixées"				
Sandrine Derrien-Courtel (MNHN Concarneau)	Coordination nationale			

Référents scientifiques "DCE-Benthos – Macroalgues Fixées"					
Sandrine Derrien-Courtel (MNHN Concarneau) Référents scientifiques "DCE-Benthos –					
	Macroalgues Subtidales"				
Erwan Ar Gall, Michel Le Duff (IUEM-UBO)	Référents scientifiques "DCE-Benthos –				
	Macroalgues Intertidales"				

Opérateurs de l'Habitat "flore des roches intertidales" – Bretagne (GC08, GC18, GC34, GC42, GC44, GC45; GT03, GT15, GT16, GT20, GT28)

Erwan Ar Gall (IUEM-UBO-LEMAR)

Michel Le Duff (IUEM-UBO-UAR 3113)

Prélèvements terrain, saisie, analyse des données, expertise taxonomique, édition du bulletin

Thomas Burel (IUEM-UBO-LEMAR)

Mathieu Helias (IUEM-UBO-UAR 3113)

Responsabilité scientifique, Prélèvements terrain, saisie, analyse des données, expertise taxonomique

Prélèvements terrain, saisie, analyse des données, expertise taxonomique

Opérateurs de l'Habitat "flore des roches intertidales" - Sud Loire (GC46, 47, GC50)

Anne-Laure Barillé (Bio-Littoral)

Anne-Laure Barillé (Bio-Littoral)

Annaik Cocaud (Bio-Littoral)

Nicolas Harin (Bio-Littoral)

Nicolas Truhaud (Bio-Littoral)

Maroussia Delemarre (Bio-Littoral)

Responsabilité scientifique

Prélèvements terrain, saisie, analyse des données, expertise taxonomique, édition du bulletin

Opérateurs de l'Habitat "flore des roches intertidales" – Loire (GC53)

Vollette Julie (OBIOS)

Responsabilité scientifique, Prélèvements terrain,
saisie, expertise taxonomique macroalgues, analyse
Pierre-Guy Sauriau (Université de la Rochelle – CNRS
- LIENSs)

Responsabilité scientifique, Prélèvements terrain,
saisie, expertise taxonomique macroalgues, analyse
des données, édition du bulletin

Opérateurs de l'Habitat "flore et faune des roches subtidales" – GC07, GC16, GC18, GC20)

Sandrine Derrien-Courtel (MNHN Concarneau) Responsabilité scientifique, Expertise taxonomique Algues-Porifères

François-Xavier Decaris (MNHN Concarneau) Expertise taxonomique Hydraires, Bryozoaires,

Ascidies

Thibaut Nebout (IDRA Bio & Littoral)

Analyse en laboratoire, édition du bulletin

Thibaut Nebout (IDRA Bio & Littoral)

Prélèvements terrain

Frédéria Ziamaki (IDRA Bio & Littoral)

Frédéric Ziemski (IDRA Bio & Littoral) Thomas Lavigne (IDRA Bio & Littoral)

Opérateurs de l'Habitat "flore et faune des roches subtidales" – GC26, GC34, GC45, GC50, GC52)

Anne-Laure Barillé (Bio-Littoral)

Annaik Cocaud (Bio-Littoral)

Responsabilité scientifique
Saisie, analyse des données, expe

Anne-Laure Barillé (Bio-Littoral) Annaik Cocaud (Bio-Littoral) Marion Delemarre (Bio-Littoral) Benoît Devienne (Bio-Littoral) Margot Clair (Bio-Littoral) Nicolas Truhaud (Bio-Littoral) Nicolas Harin (Bio-Littoral) Responsabilité scientifique Saisie, analyse des données, expertise taxonomique, édition du bulletin Prélèvements terrain

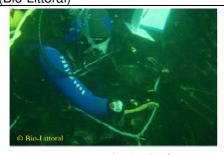


Fig. 2 : Opérateurs sur le terrain : Macroalgues fixées

Chapitre 1 : MEC : Flore des roches intertidales – Indice CCO

Toutes les stations ont été échantillonnées en 2022 via le financement du dispositif "DCE – Loire-Bretagne", selon le protocole en vigueur (Fig. 3). Dans les Masses d'Eaux Côtières, l'état qualitatif d'un site « macroalgues intertidales » est obtenu en utilisant l'indice CCO ("Cover – Characteristic species – Opportunistic species"; Ar Gall & Le Duff, 2013; Ar Gall et al., 2016). Les trois métriques prises en compte sont : la couverture macroalgale du site, la quantité d'espèces caractéristiques par ceinture et le recouvrement par les espèces opportunistes. Elles sont appliquées par ceinture d'espèces dominantes (et par niveau bathymétrique correspondant), soit 5 ou 6 ceintures en fonction des sites retenus.

En RCS, les MEC sont suivies sur deux saisons (printemps et automne) tous les 3 ans ; la fréquence peut être revue à la hausse en cas de déclassement ; dès lors, la MEC est suivie au titre du RCO.

Le traitement des échantillons et l'analyse des données sont désormais achevés et l'ensemble des résultats 2022 sont présentés dans ce rapport final.

1. Présentation générale de l'habitat :

Sur nos côtes, les macroalgues sont présentes tout le long de l'estran, depuis la limite de l'étage supralittoral jusqu'à l'étage sublittoral. Cette répartition n'est pas homogène mais se fait par niveau bathymétrique, où domine dans chacun une ou deux espèces d'algues structurantes. Ces macroalgues forment des ceintures (populations linéaires) qui abritent chacune une communauté de macroalgues. Chaque communauté correspond également à une biocénose et constitue donc un habitat. Classiquement, sur un estran complet, on dénombre six ceintures et donc six communautés de macroalgues et six habitats. On trouve ainsi, depuis le haut jusqu'au bas de l'estran : les communautés à *Pelvetia canaliculata*, *Fucus spiralis*, *Ascophyllum nodosum/Fucus vesiculosus*, *Fucus serratus*, *Himanthalia elongata/Bifurcaria bifurcata* et *Laminaria digitata*.

Les 11 sites suivis en 2022 sont, du Nord au Sud du bassin Loire-Bretagne : Malban (Sept-Iles) (GC08 – Perros-Guirec (large)), Molène (GC18 – Iroise (large)), Fort Bloqué (Keragan) (GC34 – Lorient - Groix), Belle-Ile (GC42 – Belle-Ile), Pénerf-Roch Viodec (GC44 – Baie de Vilaine (côte)), Croisic-St Goustan (GC45 – Baie de Vilaine (large)), Pointe St Gildas (GC46 – Loire (large)), l'Herbaudière (GC46 – Loire (large)), Sabias (Ile d'Yeu) (GC47 – Ile d'Yeu), la Sauzaie (Bretignolles) (GC50 – Nord Sables d'Olonne) et Grouin NE (Ile de Ré) (GC53 – Pertuis breton).

2. Stratégie d'échantillonnage :

Dans le cadre du dispositif "DCE-Benthos", et sur chacune des stations de suivi, une structure mobile de type "quadrat" est posée. Dans chaque communauté algale présente, 3 quadrats ayant chacun 33 cm de côté et une surface de 0.1 m² sont échantillonnés (Fig. 35). Dans chacun d'entre eux, les espèces algales présentes sont notées ainsi que leur recouvrement et la taille des thalles. La plupart des espèces sont identifiées *in situ*. Lorsque la détermination nécessite l'emploi de microscope, un fragment de thalle est ramené au laboratoire dans un sac étiqueté.

Selon les cas, la position géographique de chaque quadrat ou de chaque transect à été prise à l'aide d'un GPS (Tabl. 1 à 5).

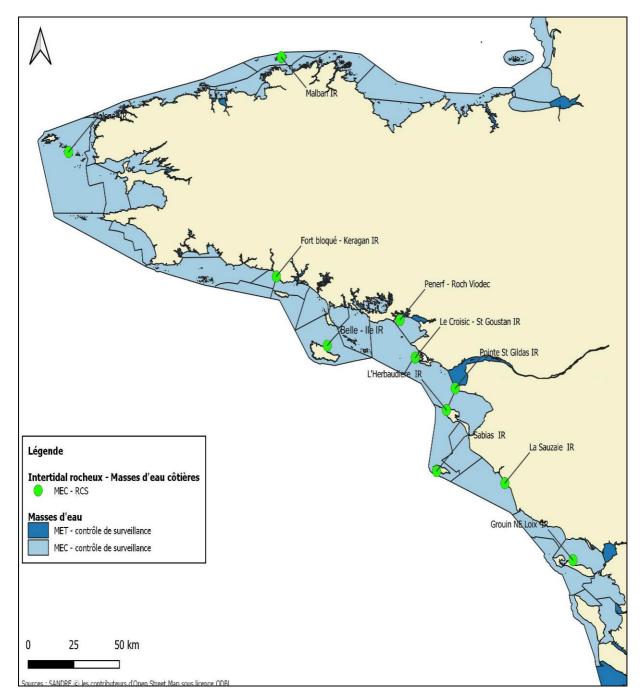


Fig. 3: 2022: Carte des sites suivis: MEC – Flore des roches intertidales

Malban (GC08-Perros-Guirec (large) ; IR 031-P-007)	Molène (GC18-Iroise (large) ; IR 037-P-066)
Pc1: 48°53.450N-3°27.940W	Pc1:48°23.396N-4°57.577W
Pc2: 48°53.452N-3°27.944W	Pc2: 48°23.388N-4°57.574W
Pc3:48°53.450N-3°27.942W	Pc3:48°23.387N-4°57.570W
Fspi1: 48°53.456N-3°27.941W	Fspi1: 48°23.398N-4°57.582W
Fspi2: 48°53.463N-3°27.934W	Fspi2: 48°23.400N-4°57.586W
Fspi3: 48°53.459N-3°27.938W	Fspi3: 48°23.400N-4°57.581W
An1: 48°53.453N-3°27.999W	An1:48°23.609N-4°57.385W
An2:48°53.454N-3°28.015W	An2:48°23.395N-4°57.609W
An3: 48°53.465N-3°28 003W	An3:48°23.395N-4°57.591W
Fser1: 48°53.452N-3°28.041W	Fser1: 48°23.381N-4°57.626W
Fser2: 48°53.452N-3°28.046W	Fser2: 48°23.373N-4°57.641W
Fser3: 48°53.468N-3°28.016W	Fser3: 48°23.379N-4°57.644W
He1: 48°53.459N-3°28.053W	He1: 48°23.372N-4°57.658W
He2: 48°53.440N-3°28.067W	He2: 48°23.367N-4°57.662W
He3: 48°53.452N-3°28.063W	He3: 48°23.368N-4°57.660W
Ld1: 48°53.444N-3°28.071W	Ld1: 48°23.369N-4°57.669W
Ld2: 48°53.439N-3°28.079W	Ld2: 48°23.372N-4°57.674W
Ld3: 48°53.437N-3°28.070W	Ld3: 48°23.372N-4°57.669W
Fort Bloqué (Keragan) (GC34-Lorient-Groix; IR 048-P-	Belle-Ile (GC42-Belle-Ile ; IR 054-P-025)
	Pc1: 47°20.052N-3°08.812W
075) Ecni : 47°44 0 14N 3°30 027W	
Fspi1 : 47°44.0.14N-3°30.027W Fspi2 : 47°44.017N-3°30.027W	Pc2: 47°20.035N-3°08.833W Pc3: 47°20.023N-3°08.845W
-	
Fspi3: 47°44.038N-3°30.036W	Fspi1: 47°20.048N-3°08.819W
An1: 47°43.922N-3°30.050W	Fspi2: 47°20.057N-3°08.801W
An2: 47°43.9221N-3°30.051W	Fspi3: 47°20.053N-3°08.803W
An3: 47°43.921N-3°30.048W	An1: 47°20.049N-3°08.812W
Fser1: 47°43.943N-3°30.074W	An2: 47°20.043N-3°08.816W
Fser2: 47°43.939N-3°30.075W	An3: 47°20.042N-3°08.819W
Fser3: 47°43.934N-3°30.070W	Fser1: 47°20.025N-3°08.747W
Bb1: 47°43.904N-3°30174W	Fser2: 47°20.025N-3°08.746W
Bb2: 47°43.903N-3°30.177W	Fser3: 47°20.024N-3°08.732W
Bb3: 47°43.896N-3°30.173W	He1: 47°20.030N-3°08.725W
Ld1: 47°43.898N-3°30.175W	He2: 47°20.029N-3°08.727W
Ld2: 47°43.892N-3°30.177W	He3: 47°20.033N-3°08732W
Ld3: 47°43.891N-3°30.167W	
Pénerf-Roch Viodec (GC44-Baie de Vilaine (côte)) ; IR	Croisic-St Goustan (GC45-Baie de Vilaine (large) ; IR
063-P-042)	062-P-035)
Pc1: 47°30.217N-2°38.000W	Pc1: 47°18.132N-2°31.607W
Pc2: 47°30.215N-2°37.991W	Pc2: 47°18.115N-2°31.596W
Pc3: 47°30.233N-2°37.996W	Pc3: 47°18.111N-2°31.597W
Fspi1: 47°30.200N-2°38.020W	Fspi1: 47°18.124N-2°31.631W
Fspi2: 47°30.205N-2°38.002W	Fspi2: 47°18.124N-2°31.632W
Fspi3: 47°30.214N-2°38.001W	Fspi3: 47°18.128N-2°31.607W
An1: 47°30.151N-2°38.038W	An1: 47°18.189N-2°31.628W
An2: 47°30.168N-2°38.027W	An2: 47°18.136N-2°31.607W
An3: 47°30.191N-2°38.018W	An3: 47°18.136N-2°31.617W
Fser1: 47°30.087N-2°38.010W	Fser1: 47°18.214N-2°31.633W
Fser2: 47°30.103N-2°38.032W	Fser2: 47°18.209N-2°31.635W
Fser3: 47°30.124N-2°38.048W	Fser3: 47°18.203N-2°31.633W
He1: 47°30.071N-2°38.005W	He1: 47°18.249N-2°31.626W
He2: 47°30.073N-2°38.010W	He2: 47°18.242N-2°31.625W
He3: 47°30.078N-2°38.003W	He3: 47°18.223N-2°31.611W
1100 50.07011 2 50.005 11	Ld1: 47°18.250N-2°31.591W
	Ld2: 47°18.248N-2°31.594W
	Ld2 : 47 16.246N-2 31.394W Ld3 : 47°18.226N-2°31.613W
Grouin NE (Ile de Ré) (GC53-Pertuis Breton) ; IR 076-P-	Fser1 : 46°13.571N-1°25.880W
059)	He1: 45°13.593N-1°25.102W
032)	
Fspi1: 45°13.503N-1°25.660W	Ld1: 45°14.085N-1°25.577W

Tabl. 1 : 2022 : Points d'échantillonnage des sites de Malban, Molène, Fort Bloqué, Belle-Ile, Pénerf, Croisic et Grouin pour les roches intertidales

	Pte St Gildas (GC46-Loire (large); IR 070-P-062)								
	Ceinture à <i>Pelvetia canaliculata</i>								
	1			2			3		
47° 8,164' N	47° 8,164' N	47° 8,164′ N	47° 8,146′ N	47° 8,146′ N	47° 8,146′ N	47° 8,141' N	47° 8,141' N	47° 8,141' N	
2° 14,777' O	2° 14,777' O	2° 14,777' O	2° 14,786' O	2° 14,786' O	2° 14,786′ O	2° 14,790' O	2° 14,790' O	2° 14,790' O	
PC1.1	PC1.2	PC1.3	PC2.1	PC2.2	PC2.3	PC3.1	PC3.2	PC3.3	
			Ceint	ure à Fucus sp	iralis				
	1			2			3		
47° 8,189' N	47° 8,189' N	47° 8,189' N	47° 8,177' N	47° 8,177' N	47° 8,177' N	47° 8,164' N	47° 8,164' N	47° 8,164' N	
2° 14,761' O	2° 14,761' O	2° 14,761' O	2° 14,769' O	2° 14,769' O	2° 14,769' O	2° 14,775' O	2° 14,775' O	2° 14,775' O	
Fspi 1.1	Fspi 1.2	Fspi 1.3	Fspi 2.1	Fspi 2.2	Fspi 2.3	Fspi 3.1	Fspi 3.2	Fspi 3.3	
		Ceint	ire à Ascophyl	llum nodosum	- Fucus vesicu	ılosus			
	1			2			3		
47° 8,221' N	47° 8,221' N	47° 8,221' N	47° 8,218' N	47° 8,218' N	47° 8,218' N	47° 8,210' N	47° 8,210' N	47° 8,210' N	
2° 14,779' O	2° 14,779' O	2° 14,779' O	2° 14,785' O	2° 14,785' O	2° 14,785' O	2° 14,772' O	2° 14,772' O	2° 14,772' O	
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3	
			Ceint	ure à Fucus se	rratus				
	1			2			3		
47° 8,344' N	47° 8,344' N	47° 8,344' N	47° 8,326' N	47° 8,326' N	47° 8,326' N	47° 8,324' N	47° 8,324' N	47° 8,324' N	
2° 14,975' O	2° 14,975' O	2° 14,975' O	2° 14,977' O	2° 14,977' O	2° 14,977' O	2° 14,970' O	2° 14,970' O	2° 14,970' O	
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3	
		Ceintu	re à Himantho	ılia elongata -	Bifurcaria bif	urcata			
	1			2			3		
47° 8,357' N	47° 8,357' N	47° 8,357' N	47° 8,356' N	47° 8,356' N	47° 8,356' N	47° 8,358' N	47° 8,358' N	47° 8,358' N	
2° 14,990' O	2° 14,990' O	2° 14,990' O	2° 14,990' O	2° 14,990' O	2° 14,990' O	2° 14,984' O	2° 14,984' O	2° 14,984' O	
HI 1.1	HI 1.2	HI 1.3	HI 2.1	HI 2.2	HI 2.3	HI 3.1	HI 3.2	HI 3.3	
			Ceinture	e à Laminaria	digitata				
	1			2			3		
47° 8,328' N	47° 8,328' N	47° 8,328' N	47° 8,325' N	47° 8,325' N	47° 8,325' N	47° 8,320' N	47° 8,320' N	47° 8,320' N	
2° 15,010' O	2° 15,010' O	2° 15,010' O	2° 15,009' O	2° 15,009' O	2° 15,009' O	2° 14,998' O	2° 14,998' O	2° 14,998' O	
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3	
			Ceir	ture à Osmun	dea				
	1			2			3		
47° 8,308' N	47° 8,308' N	47° 8,308' N	47° 8,299' N	47° 8,299' N	47° 8,299' N	47° 8,297' N	47° 8,297' N	47° 8,297' N	
2° 14,919' O	2° 14,919' O	2° 14,919' O	2° 14,918' O	2° 14,918' O	2° 14,918' O	2° 14,897' O	2° 14,897' O	2° 14,897' O	
Osm 1.1	Osm 1.2	Osm 1.3	Osm 2.1	Osm 2.2	Osm 2.3	Osm 3.1	Osm 3.2	Osm 3.3	

			Ceinture	à Pelvetia cai	naliculata			
	1			2			3	
47° 8,164' N	47° 8,164' N	47° 8,164' N	47° 8,147' N	47° 8,147' N	47° 8,147' N	47° 8,141' N	47° 8,141' N	47° 8,141' N
2° 14,777' O	2° 14,777' O	2° 14,777' O	2° 14,786' O	2° 14,786' O	2° 14,786′ O	2° 14,790' O		2° 14,790' O
PC1.1	PC1.2	PC1.3	PC2.1	PC2.2	PC2.3	PC3.1	PC3.2	PC3.3
			Ceint	ure à Fucus s _i	oiralis			
	1			2			3	
47° 8,191' N	47° 8,191' N	47° 8,191' N	47° 8,175′ N	47° 8,175′ N	47° 8,175′ N	47° 8,164' N	47° 8,164' N	47° 8,164' N
2° 14,762' O	2° 14,762' O	2° 14,762' O	2° 14,769' O	2° 14,769' O	2° 14,769' O	2° 14,775' O	2° 14,775' O	2° 14,775' O
Fspi 1.1	Fspi 1.2	Fspi 1.3	Fspi 2.1	Fspi 2.2	Fspi 2.3	Fspi 3.1	Fspi 3.2	Fspi 3.3
		Ceintur	e à Ascophyl	lum nodosun	n - Fucus vesi	culosus		
	1			2			3	
47° 8,223' N	47° 8,223′ N	47° 8,223′ N	47° 8,219′ N	47° 8,219' N	47° 8,219' N	47° 8,209' N	47° 8,209' N	47° 8,209' N
2° 14,780' O	2° 14,780' O	2° 14,780' O	2° 14,785' O	2° 14,785' O	2° 14,785' O	2° 14,774' O	2° 14,774' O	2° 14,774' O
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3
Ceinture à Fucus serratus								
	1			2			3	
47° 8,344' N	47° 8,344' N	47° 8,344' N	47° 8,326' N	47° 8,326' N	47° 8,326' N	47° 8,324' N	47° 8,324' N	47° 8,324' N
2° 14,975' O	2° 14,975' O	2° 14,975' O	2° 14,976' O	2° 14,976' O	2° 14,976' O	2° 14,970' O	2° 14,970' O	2° 14,970' O
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3
		Ceinture	à Himantha	lia elongata	- Bifurcaria b	ifurcata		
	1			2		3		
47° 8,359' N	47° 8,359' N	47° 8,359' N	47° 8,355' N	47° 8,355' N	47° 8,355' N	47° 8,357' N	47° 8,357' N	47° 8,357' N
2° 14,987' O	2° 14,987' O	2° 14,987' O	2° 14,990' O	2° 14,990' O	2° 14,990' O	2° 14,986' O	2° 14,986' O	2° 14,986' O
HI 1.1	HI 1.2	HI 1.3	HI 2.1	HI 2.2	HI 2.3	HI 3.1	HI 3.2	HI 3.3
			Ceinture	à Laminaria	digitata			
	1			2			3	
47° 8,328' N	47° 8,328' N	47° 8,328' N	47° 8,325' N	47° 8,325' N	47° 8,325' N	47° 8,320' N	47° 8,320' N	47° 8,320' N
2° 15,010' O	2° 15,010' O	2° 15,010' O	2° 15,009' O	2° 15,009' O	2° 15,009' O	2° 14,998' O	2° 14,998' O	2° 14,998' O
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3
			Cein	ture à <i>Osmui</i>	ndea			
	1	T		2			3	
47° 8,308' N	47° 8,308' N	47° 8,308' N	47° 8,299' N	47° 8,299' N	47° 8,299' N	47° 8,297' N	47° 8,297' N	47° 8,297' N
2° 14,919' O	2° 14,919' O	2° 14,919' O	2° 14,918' O	2° 14,918' O	2° 14,918' O	2° 14,897' O	2° 14,897' O	2° 14,897' O
Osm 1.1	Osm 1.2	Osm 1.3	Osm 2.1	Osm 2.2	Osm 2.3	Osm 3.1	Osm 3.2	Osm 3.3

Tabl. 2 : 2022 : Points d'échantillonnage du site « Pte St Gildas » des roches intertidales $(A:printemps\ 2022\ ;\ B:Automne\ 2022)$

	Pt L'H	I erbaudièr	e (Noirmou	itier) (GC4	6-Loire (lar	ge) ; IR 069	9-P-045)	
_			Ceinture à	à Pelvetia car	naliculata			
	1			2		3		
47°1,485' N	47°1,485' N	47°1,485′ N	47°1,513′ N	47°1,513′ N	47°1,513′ N	47°1,523′ N	47°1,523′ N	47°1,523' N
2°18,511' O	2°18,511' O	2°18,511' O	2°18,489' O	2°18,489' O	2°18,489' O	2°18,496' O	2°18,496' O	2°18,496' O
PC1.1	PC1.2	PC1.3	PC2.1	PC2.2	PC2.3	PC3.1	PC3.2	PC3.3
			Ceint	ure à Fucus s _i	oiralis			
	1			2			3	
47°1,518' N	47°1,518' N	47°1,518' N	47°1,521' N	47°1,521' N	47°1,521' N	47°1,523' N	47°1,523′ N	47°1,523′ N
2°18,511' O	2°18,511' O	2°18,511' O	2°18,513' O	2°18,513' O	2°18,513' O	2°18,516' O	2°18,516' O	2°18,516' O
Fspi 1.1	Fspi 1.2	Fspi 1.3	Fspi 2.1	Fspi 2.2	Fspi 2.3	Fspi 3.1	Fspi 3.2	Fspi 3.3
	Ceinture à Ascophyllum nodosum - Fucus vesiculosus							
	1			2		3		
47°1,548' N	47°1,548' N	47°1,548′ N	47°1,527' N	47°1,527' N	47°1,527' N	47°1,515' N	47°1,515' N	47°1,515′ N
2°18,515' O	2°18,515' O	2°18,515' O	2°18,533' O	2°18,533' O	2°18,533' O	2°18,535' O	2°18,535' O	2°18,535' O
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3
			Ceintu	ire à Fucus se	rratus			
	1			2			3	
47°1,554' N	47°1,554' N	47°1,554' N	47°1,565' N	47°1,565' N	47°1,565' N	47°1,582' N	47°1,582' N	47°1,582' N
2°18,677' O	2°18,677' O	2°18,677' O	2°18,598' O	2°18,598' O	2°18,598' O	2°18,569' O	2°18,569' O	2°18,569' O
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3
			Ceinture	à Laminaria	digitata			
	1			2			3	
47°1,569' N	47°1,569' N	47°1,569' N	47°1,562' N	47°1,562' N	47°1,562' N	47°1,568' N	47°1,568' N	47°1,568′ N
2°18,755' O	2°18,755' O	2°18,755' O	2°18,747' O	2°18,747' O	2°18,747' O	2°18,745' O	2°18,745' O	2°18,745' O
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3

			Ceinture à	Pelvetia ca	naliculata				
	1			2		3			
47°1,485' N	47°1,485' N	47°1,485' N	47°1,513′ N	47°1,513′ N	47°1,513′ N	47°1,523′ N	47°1,523′ N	47°1,523′ N	
2°18,511' O	2°18,511' O	2°18,511' O	2°18,489' O	2°18,489' O	2°18,489' O	2°18,496′ O	2°18,496′ O	2°18,496' O	
PC1.1	PC1.2	PC1.3	PC2.1	PC2.2	PC2.3	PC3.1	PC3.2	PC3.3	
			Ceintu	ire à Fucus s	piralis				
	1			2			3		
47°1,518′ N	47°1,518' N	47°1,518' N	47°1,521' N	47°1,521' N	47°1,521' N	47°1,523′ N	47°1,523′ N	47°1,523′ N	
2°18,511' O	2°18,511' O	2°18,511' O	2°18,513' O	2°18,513' O	2°18,513' O	2°18,516' O	2°18,516′ O	2°18,516' O	
Fspi 1.1	Fspi 1.2	Fspi 1.3	Fspi 2.1	Fspi 2.2	Fspi 2.3	Fspi 3.1	Fspi 3.2	Fspi 3.3	
	Ceinture à Ascophyllum nodosum - Fucus vesiculosus								
	1			2			3		
47°1,548′ N	47°1,548' N	47°1,548' N	47°1,527' N	47°1,527' N	47°1,527' N	47°1,515' N	47°1,515' N	47°1,515' N	
2°18,515' O	2°18,515' O	2°18,515' O	2°18,533' O	2°18,533' O	2°18,533' O	2°18,535' O	2°18,535' O	2°18,535' O	
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3	
			Ceintu	re à Fucus se	erratus				
	1			2		3			
47°1,554' N	47°1,554' N	47°1,554' N	47°1,565' N	47°1,565' N	47°1,565' N	47°1,582' N	47°1,582' N	47°1,582' N	
2°18,677' O	2°18,677' O	2°18,677' O	2°18,598' O	2°18,598' O	2°18,598' O	2°18,569' O	2°18,569' O	2°18,569' O	
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3	
			Ceinture	à Laminaria	digitata				
	1		2				3		
47°1,569' N	47°1,569′ N	47°1,569′ N	47°1,568′ N	47°1,568′ N	47°1,568′ N	47°1,568′ N	47°1,568' N	47°1,568' N	
2°18,755' O	2°18,755' O	2°18,755' O	2°18,742' O	2°18,742' O	2°18,742' O	2°18,745' O	2°18,745' O	2°18,745' O	
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3	

Tabl. 3 : 2022 : Points d'échantillonnage du site « L'Herbaudière » des roches intertidales $(A:printemps\ 2022\ ;\ B:Automne\ 2022)$

	Sabias (GC47-Ile d'Yeu) ; IR 072-P-021)							
			Ceinture	à Pelvetia car	naliculata			
	2			3			4	
46°42,135' N	46°42,135′ N	46°42,135' N	46°42,136′ N	46°42,136′ N	46°42,136′ N	46°42,132 N	46°42,132 N	46°42,132 N
2°22,612' O	2°22,612' O	2°22,612' O	2°22,607' O	2°22,607' O	2°22,607' O	2°22,600'O	2°22,600'O	2°22,600'O
PC2.1	PC2.2	PC2.3	PC3.1	PC3.2	PC3.3	PC4.1	PC4.2	PC4.3
			Ceint	ıre à Fucus s _i	oiralis			
	1			2			3	
46°42,133' N	46°42,133' N	46°42,133' N	46°42,137' N	46°42,137′ N	46°42,137' N	46°42,140' N	46°42,140' N	46°42,140' N
2°22,602' O	2°22,602' O	2°22,602' O	2°22,610' O	2°22,610' O	2°22,610' O	2°22,602' O	2°22,602' O	2°22,602' O
Fspi 1.1	Fspi 1.2	Fspi 1.3	Fspi 2.1	Fspi 2.2	Fspi 2.3	Fspi 3.1	Fspi 3.2	Fspi 3.3
	Ceinture à Ascophyllum nodosum - Fucus vesiculosus							
	1			2			3	
46°42,135' N	46°42,135′ N	46°42,135' N	46°42,132' N	46°42,132' N	46°42,132' N	46°42,135′ N	46°42,135' N	46°42,135' N
2°22,611' O	2°22,611' O	2°22,611' O	2°22,612' O	2°22,612' O	2°22,612' O	2°22,615' O	2°22,615' O	2°22,615' O
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3
			Ceintu	ire à Fucus se	rratus			
	1			2			3	
46°42,102' N	46°42,102′ N	46°42,102' N	46°421,099' N	46°421,099' N	46°421,099' N	46°42,107′ N	46°42,107' N	46°42,107' N
2°22,622' O	2°22,622' O	2°22,622' O	2°22,615' O	2°22,615' O	2°22,615' O	2°22,608' O	2°22,608' O	2°22,608' O
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3
		Ceinture	à Himantha	lia elongata	- Bifurcaria b	ifurcata		
	1			2			3	
46°42,097' N	46°42,097' N	46°42,097' N	46°42,095' N	46°42,095' N	46°42,095' N	46°42,100' N	46°42,100' N	46°42,100' N
2°22,606' O	2°22,606' O	2°22,606' O	2°22,595' O	2°22,595' O	2°22,595' O	2°22,587' O	2°22,587' O	2°22,587' O
HI 1.1	HI 1.2	HI 1.3	HI 2.1	HI 2.2	HI 2.3	HI 3.1	HI 3.2	HI 3.3
			Ceinture	à Laminaria	digitata			
	1			2			3	_
46°42,097' N	46°42,097' N	46°42,097' N	46°42,095' N	46°42,095' N	46°42,095' N	46°42,100' N	46°42,100' N	
2°22,606' O	2°22,606' O	2°22,606' O	2°22,595' O	2°22,595' O	2°22,595' O	2°22,587' O	2°22,587' O	2°2 2,5 87' O
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3

			Ceinture	à Pelvetia can	aliculata			
	1		cemture	2	uncuratu		3	
46°42,136' N	46°42,136' N	46°42,136' N	46°42,133 N'	46°42,133 N'	46°42,133 N'	46°42,136' N	46°42,136' N	46°42.136' N
2°22,615' O	2°22,615' O	2°22,615' O	2° 22,601 O	2° 22,601 O	2° 22,601 O	2°22,607' O	2°22,607' O	2°22,607' O
PC1.1	PC1.2	PC1.3	PC2.1	PC2.2	PC2.3	PC3.1	PC3.2	PC3.3
			Ceint	ure à Fucus sp	iralis			•
	1			2			3	
46°42,133' N	46°42,133' N	46°42,133' N	46°42,137' N	46°42,137' N	46°42,137' N	46°42,140' N	46°42,140' N	46°42,140' N
2°22,602' O	2°22,602' O	2°22,602' O	2°22,610' O	2°22,610' O	2°22,610' O	2°22,602' O	2°22,602' O	2°22,602' O
Fspi 1.1	Fspi 1.2	Fspi 1.3	Fspi 2.1	Fspi 2.2	Fspi 2.3	Fspi 3.1	Fspi 3.2	Fspi 3.3
		Ceintu	ire à <i>Ascophyl</i>	lum nodosum	- Fucus vesico	ulosus		
	1			2			3	
46°42,135' N	46°42,135' N	46°42,135′ N	46°42,132′ N	46°42,132' N	46°42,132' N	46°42,135' N	46°42,135' N	46°42,135′ N
2°22,611' O	2°22,611' O	2°22,611' O	2°22,612' O	2°22,612' O	2°22,612' O	2°22,615' O	2°22,615' O	2°22,615' O
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3
			Ceint	ire à Fucus se	rratus			
	1			2			3	
46°42,102' N	46°42,102' N	46°42,102' N	46°421,099' N	46°421,099' N	46°421,099' N	46°42,107' N	46°42,107' N	46°42,107' N
2°22,622' O	2°22,622' O	2°22,622' O	2°22,615' O	2°22,615' O	2°22,615' O	2°22,608' O	2°22,608' O	2°22,608' O
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3
		Ceintu	re à Himantho	ılia elongata -	Bifurcaria bij	furcata		
	1			2			3	
46°42,097' N	46°42,097' N	46°42,097' N	46°42,095′ N	46°42,095′ N	46°42,095′ N	46°42,100' N	46°42,100' N	46°42,100' N
2°22,606' O	2°22,606' O	2°22,606' O	2°22,595' O	2°22,595' O	2°22,595' O	2°22,587' O	2°22,587' O	2°22,587' O
HI 1.1	HI 1.2	HI 1.3	HI 2.1	HI 2.2	HI 2.3	HI 3.1	HI 3.2	HI 3.3
			Ceinture	à Laminaria	digitata			
	1			2			3	
46°42,084' N			46°42,079' N					
2°22,620' O			2°22,622' O					
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3

Tabl. 4 : 2022 : Points d'échantillonnage du site « Sabias » des roches intertidales $(A:printemps\ 2022\ ;\ B:Automne\ 2022)$

	La Sauzaie (Brétignolles) (GC50-Nord Sables d'Olonne) ; IR 074-P-056)							
	Ceinture à Ascophyllum nodosum - Fucus vesiculosus							
	1			2		3		
46°38,386' N	46°38,386' N	46°38,386' N	46°38,376′ N	46°38,376′ N	46°38,376′ N	46°38,379' N	46°38,379' N	46°38,379' N
01°53,808' O	01°53,808′ O	01°53,808′ O	01°53,817'O	01°53,817'O	01°53,817'O	01°53,813′ O	01°53,813′ O	01°53,813′ O
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3
			Ceintu	ıre à Fucus se	rratus			
	1 2				3			
46°38,357' N	46°38,357' N	46°38,357' N	46°38,357' N	46°38,357' N	46°38,357' N	46°38,364' N	46°38,364' N	46°38,364' N
01°53,822' O	01°53,822' O	01°53,822' O	01°53,816′ O	01°53,816′ O	01°53,816′ O	01°53,834' O	01°53,834' O	01°53,834' O
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3
		Ceintur	e à Himantha	ılia elongata	- Bifurcaria bi	furcata		
	1			2			3	
46°38,317' N	46°38,317′ N	46°38,317′ N	46°38,326′ N	46°38,326′ N	46°38,326′ N	46°38,334' N	46°38,334' N	46°38,334' N
01°53,873' O	01°53,873′ O	01°53,873′ O	01°53,855' O	01°53,855' O	01°53,855' O	01°53,831′ O	01°53,831′ O	01°53,831' O
HI 1.1	HI 1.2	HI 1.3	HI 2.1	HI 2.2	HI 2.3	HI 3.1	HI 3.2	HI 3.3
			Ceinture	à Laminaria	digitata			
	1			2			3	
46°38,275' N	46°38,275' N	46°38,275' N	46°38,272' N	46°38,272' N	46°38,272′ N	46°38,264' N	46°38,264' N	46°38,264' N
01°53,930' O	01°53,930' O	01°53,930' O	01°53,920' O	01°53,920' O	01°53,920' O	01°53,909' O	01°53,909' O	01°53,909' O
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3

	Ceinture à Ascophyllum nodosum - Fucus vesiculosus							
	1			2			3	
46°38,386' N	46°38,386' N	46°38,386' N	46°38,376′ N	46°38,376' N	46°38,376′ N	46°38,380' N	46°38,380' N	46°38,380' N
01°53,808' O	01°53,808' O	01°53,808' O	01°53,817'O	01°53,817'O	01°53,817'O	01°53,814' O	01°53,814' O	01°53,814' O
AN 1.1	AN 1.2	AN 1.3	AN 2.1	AN 2.2	AN 2.3	AN 3.1	AN 3.2	AN 3.3
			Ceint	ure à Fucus se	rratus			
	1			2			3	
46°38,350' N	46°38,350' N	46°38,350' N	46°38,354' N	46°38,354' N	46°38,354' N	46°38,365' N	46°38,365' N	46°38,365' N
01°53,825' O	01°53,825' O	01°53,825' O	01°53,817' O	01°53,817' O	01°53,817' O	01°53,808' O	01°53,808' O	01°53,808' O
Fser 1.1	Fser 1.2	Fser 1.3	Fser 2.1	Fser 2.2	Fser 2.3	Fser 3.1	Fser 3.2	Fser 3.3
		Ceintu	re à <i>Himantha</i>	ılia elongata -	Bifurcaria bij	furcata		
	1			2		3		
46°38,319' N	46°38,319′ N	46°38,319′ N	46°38,327' N	46°38,327' N	46°38,327' N	46°38,332' N	46°38,332' N	46°38,332' N
01°53,875' O	01°53,875' O	01°53,875' O	01°53,857' O	01°53,857' O	01°53,857' O	01°53,833' O	01°53,833' O	01°53,833' O
HI 1.1	HI 1.2	HI 1.3	HI 2.1	HI 2.2	HI 2.3	HI 3.1	HI 3.2	HI 3.3
			Ceinture	e à Laminaria	digitata			
	1			2			3	
46°38,274' N	46°38,274' N	46°38,274′ N	46°38,276′ N	46°38,276′ N	46°38,276′ N	46°38,283' N	46°38,283' N	46°38,283' N
01°53,886' O	01°53,886′ O	01°53,886' O	01°53,912' O	01°53,912' O	01°53,912' O	01°53,911' O	01°53,911' O	01°53,911' O
Lam 1.1	Lam 1.2	Lam 1.3	Lam 2.1	Lam 2.2	Lam 2.3	Lam 3.1	Lam 3.2	Lam 3.3

Tabl. 5 : 2022 : Points d'échantillonnage du site « La Sauzaie » des roches intertidales $(A:printemps\ 2022\ ;\ B:Automne\ 2022)$

Les missions de terrain se déroulent à la fin de l'hiver et au printemps (entre mars et mai 2022) pour la première saison d'échantillonnage et à la fin de l'été et à l'automne (entre septembre et fin novembre 2022) pour la seconde (Tabl. 6). Elles sont effectuées lors de marées de vives eaux pour avoir accès à toutes les communautés algales présentes.

Site	Date	Coefficient de marée
Malban 1	03-04/03/2022	103 - 103
Malban 2	28/10/2022	94
Molène 1	19-20/04/2022	101 - 93
Molène 2	12-13/09/2022	105 – 100
Fort Bloqué 1	15-16/06/2022	95 – 96
Fort Bloqué 2	28/09/2022	95
Belle Ile 1	01-02/04/2022	97 – 98
Penerf 1	21-22/03/2022	99 – 92
Penerf 2	27/09/2022	95
Le Croisic 1	17-18/05/2022	100 – 98
Le Croisic 2	24-25/11/2022	96 – 97
Pte St Gildas 1	21/03/2022	99
Pte St Gildas 2	11/10/2022	100
L'Herbaudière 1	19/04/2022	101
L'Herbaudière 2	10/10/2022	101
Sabias 1	21/03/2022	99
Sabias 2	11/10/2022	100
La Sauzaie 1	19/04/2022	101
La Sauzaie 2	11/10/2022	100
Grouin NE 1	18/04/2022	103
Grouin NE 2	10-11/10/2022	101 – 100

Tabl. 6: 2022: Echantillonnage des sites Flore des roches intertidales

3. Résultats de la surveillance :

Sur chaque site, les informations suivantes ont été enregistrées : la surface de chaque ceinture ainsi que la couverture macroalgale moyenne, la présence dans les quadrats des espèces caractéristiques de la ceinture et leur recouvrement, la présence des espèces opportunistes et leur recouvrement.

Rappelons que les ceintures de macroalgues intertidales sont désignées par le nom des espèces dominantes (structurantes) : Pc = Pelvetia canaliculata

Fspi = Fucus spiralis

An = Ascophyllum nodosum (A. nodosum / Fucus vesiculosus)

Fser = Fucus serratus

He/Bb = Himanthalia elongata / Bifurcaria bifurcata

Ld = Laminaria digitata (cette ceinture est ainsi désignée même lorsque L. digitata est

absente ; et même lorsqu'aucune autre laminaire n'est présente)

1) <u>Malban</u>: Le site de Malban est suivi pour la masse d'eau côtière GC08 – Perros-Guirec (large) (Fig. 4).

➤ Mission de printemps :

Pour le site de Malban, les surfaces de chaque ceinture et les recouvrements moyens observés au printemps sont donnés dans le tableau 7 :

Ceinture	Surface	Recouvrement
Pc	500 m^2	25%
Fspi	1000 m ²	15%
An/Fves	5600 m ²	35%
Fser	2100 m ²	60%
He/Bb	600 m^2	95%
Ld	525 m ²	95%

Tabl. 7: 2022: Malban - Surface et Recouvrement au printemps

Fig. 4: 2022: Carte de localisation du site de Malban

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 8 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	3.89%
Hildenbrandia rubra	10.83%
Pelvetia canaliculata	26.11%
Hydropunctaria maura	5%
Espèces opportunistes	
Ulva compressa	0.56%

Tabl. 8: 2022: Malban – Ceinture à Pelvetia canaliculata au printemps

Dans la ceinture à *Fucus spiralis*, nous avons retenu trois espèces caractéristiques et deux espèces opportunistes, données dans le tableau 9 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	2.78%
Fucus spiralis	4.72%
Hildenbrandia rubra	9.17%
Espèces opportunistes	
Enteromorpha compressa	5%
Ulva spp.	0.28%

Tabl. 9: 2022: Malban – Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Fucus vesiculosus* nous avons retenu trois espèces caractéristiques et trois espèces opportunistes, données dans le tableau 10 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus vesiculosus	9.17%
Phymatolithon lenormandii	4.72%
Mastocarpus stellatus	12.78%
Espèces opportunistes	
Ceramium virgatum	0.28%
Ulva compressa	0.28%
Ulva spp.	2.22%

Tabl. 10: 2022: Malban - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps

Dans la ceinture à *Fucus serratus* nous avons retenu onze espèces caractéristiques et trois espèces opportunistes, données dans le tableau 11 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	2.50%
Cladophora rupestris	3.89%
Corallina elongata	4.17%
Fucus serratus	7.50%
Gelidium spinosum	2.78%
Phymatolithon lenormandii	16.11%
Lomentaria articulata	10.28%
Mastocarpus stellatus	24.17%
Osmundea pinnatifida	10.56%
Palmaria palmata	5.56%
Plumaria plumosa	2.78%
Espèces opportunistes	
Ceramium gaditanum	6.11%
Ulva compressa	0.28%
Ulva spp.	8.06%

Tabl. 11: 2022: Malban - Ceinture à Fucus serratus au printemps

Dans la ceinture à *Himanthalia elongata | Bifurcaria bifurcata* nous avons retenu dix espèces caractéristiques et une espèce opportuniste, données dans le tableau 12 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	6.94%
Chondrus crispus	11.67%
Cladophora rupestris	4.44%
Corallina elongata	14.17%
Cryptopleura ramosa	5.28%
Himanthalia elongata	9.17%
Lithophyllum incrustans	20.83%
Lomentaria articulata	7.50%
Mastocapus stellatus	15%
Palmaria palmata	7.78%
Espèces opportunistes	
Ulva spp.	3.33%

Tabl. 12: 2022: Malban – Ceinture à *Himanthalia elongata / Bifurcaria bifurcata* au printemps

Dans la ceinture à *Laminaria digitata*, nous avons retenu onze espèces caractéristiques et deux espèces opportunistes, données dans le tableau 13 :

Espèces	Recouvrement
Espèces caractéristiques	
Calliblepharis jubata	3.89%
Chondracanthus acicularis	2.5%
Chondrus crispus	21.11%
Corallina elongata	17.50%
Cryptopleura ramosa	6.39%
Himanthalia elongata	7.50%
Laminaria digitata	46.39%
Lithophyllum incrustans	34.44%
Lomentaria articulata	4.17%
Mastocarpus stellatus	9.06%
Palmaria palmata	2.78%
Espèces opportunistes	
Ulva compressa	0.28%
Ulva spp.	0.56%

Tabl. 13: 2022: Malban - Ceinture à Laminaria digitata au printemps

➤ <u>Mission d'automne</u> :

Pour le site de Malban, les surfaces de chaque ceinture et les recouvrements moyens observés en automne, sont donnés dans le tableau 14 :

Ceinture	Surface	Recouvrement
Pc	500 m^2	25%
Fspi	1000 m^2	15%
Fves	5600 m ²	35%
Fser	2100 m ²	60%
He/Bb	600 m^2	90%
Ld	525 m ²	95%

Tabl. 14: 2022: Malban - Surface et Recouvrement à l'automne

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 15 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	2.50%
Hildenbrandia rubra	21.11%
Pelvetia canaliculata	43.89%
Hydropunctaria maura	6.67%
Espèces opportunistes	
Ulva compressa	0.28%

Tabl. 15: 2022: Malban – Ceinture à *Pelvetia canaliculata* à l'automne

Dans la ceinture à *Fucus spiralis*, nous avons retenu deux espèces caractéristiques et deux espèces opportunistes, données dans le tableau 16 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	4.17%
Hildenbrandia rubra	8.89%
Espèces opportunistes	
Ulva compressa	0.28%
Ulva spp.	0.83%

Tabl. 16: 2022: Malban - Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Fucus vesiculosus* nous avons retenu quatre espèces caractéristiques et quatre espèces opportunistes, données dans le tableau 17 :

Espèces	Recouvrement
Espèces caractéristiques	
Corallina elongata	3.61%
Fucus vesiculosus	9.44%
Phymatolithon lenormandii	2.50%
Mastocarpus stellatus	9.72%
Espèces opportunistes	
Elachista fucicola	1.67%
Ulva compressa	3.06%
Ulva clathrata	2.22%
Ulva spp.	2.50%

Tabl. 17: 2022: Malban - Ceinture à Ascophyllum nodosum / Fucus vesiculosus à l'automne

Dans la ceinture à *Fucus serratus* nous avons retenu onze espèces caractéristiques et sept espèces opportunistes, données dans le tableau 18 :

Espèces	Recouvrement
Espèces caractéristiques	
Cladophora rupestris	3.33%
Corallina elongata	8.06%
Fucus serratus	24.72%
Gelidium spinosum	5%
Lithophyllum incrustans	7.50%
Phymatolithon lenormandii	18.33%
Lomentaria articulata	7.50%
Mastocarpus stellatus	30%
Osmundea pinnatifida	7.50%
Palmaria palmata	9.72%
Plumaria plumosa	2.50%
Espèces opportunistes	
Vertebrata thuyoides	0.28%
Ceramium ciliatum	0.28%
Ceramium virgatum	0.28%
Ulva compressa	1.94%
Ulva clathrata	0.56%
Pylaiella littoralis	0.28%
Ulva spp.	3.61%

Tabl. 18: 2022: Malban – Ceinture à Fucus serratus à l'automne

Dans la ceinture à *Himanthalia elongata | Bifurcaria bifurcata* nous avons retenu huit espèces caractéristiques et trois espèces opportunistes, données dans le tableau 19 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	17.78%
Chondrus crispus	15%
Corallina elongata	12.78%
Himanthalia elongata	5.28%
Lithophyllum incrustans	15%
Lomentaria articulata	4.44%
Mastocarpus stellatus	30.56%
Palmaria palmata	12.22%
Espèces opportunistes	
Ceramium echionotum	0.28%
Ulva compressa	0.83%
Ulva spp.	1.94%

Tabl. 19: 2022: Malban – Ceinture à Himanthalia elongata / Bifurcaria bifurcata à l'automne

Dans la ceinture à *Laminaria digitata*, nous avons retenu espèces huit caractéristiques et trois espèces opportunistes, données dans le tableau 20 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	9.72%
Chondrus crispus	31.67%
Corallina elongata	24.44%
Laminaria digitata	29.72%
Lithophyllum incrustans	19.72%
Lomentaria articulata	5.56%
Mastocarpus stellatus	13.89%
Palmaria palmata	9.44%
Espèces opportunistes	
Ectocarpus siliculosus	0.56%
Ulva compressa	0.28%
Ulva spp.	1.94%

Tabl. 20 : 2022 : Malban – Ceinture à *Laminaria digitata* à l'automne

2) Molène: Le site de Molène est suivi pour la masse d'eau côtière GC18 – Iroise (large) (Fig. 5).

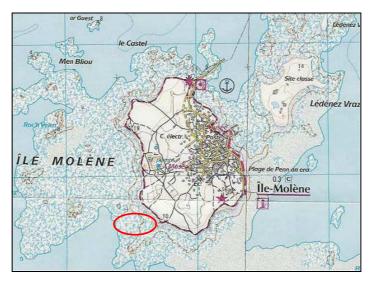


Fig. 5: 2022: Localisation du site de Molène

➤ <u>Mission de printemps</u> :

Pour le site de Molène, les surfaces de chaque ceinture et les recouvrements moyens observés au printemps, sont donnés dans le tableau 21 :

Ceinture	Surface	Recouvrement
Pc	250 m^2	70%
Fspi	700 m^2	75%
An/Fves	2800 m ²	50%
Fser	1800 m ²	80%
He/Bb	725 m ²	95%
Ld	800 m^2	95%

Tabl. 21: 2022: Molène - Surface et Recouvrement au printemps

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et aucune espèce opportuniste, données dans le tableau 22 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	13.06%
Hildenbrandia rubra	27.50%
Pelvetia canaliculata	25%
Hydropunctaria maura	12.22%
Espèces opportunistes	

Tabl. 22 : 2022 : Molène – Ceinture à *Pelvetia canaliculata* au printemps

Dans la ceinture à *Fucus spiralis*, nous avons retenu trois espèces caractéristiques et aucune espèce opportuniste, données dans le tableau 23 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	4.17%
Fucus spiralis	40.56%
Hildenbrandia rubra	57.22%
Espèces opportunistes	

Tabl. 23 : 2022 : Molène – Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu quatre espèces caractéristiques et deux espèce opportuniste, données dans le tableau 24 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	59.72%
Fucus serratus	3.61%
Phymatolithon lenormandii	11.67%
Mastocarpus stellatus	20.28%
Espèces opportunistes	
Ulva compressa	0.56%
Ulva spp.	0.28%

Tabl. 24: 2022: Molène - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps

Dans la ceinture à *Fucus serratus* nous avons retenu sept espèces caractéristiques et deux espèces opportunistes, données dans le tableau 25 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	5%
Cladophora rupestris	20.83%
Fucus serratus	55%
Gelidium spinosum	3.33%
Lithophyllum incrustans	3.33%
Phymatolithon lenormandii	18.61%
Mastocarpus stellatus	31.11%
Espèces opportunistes	
Ulva compressa	0.28%
Ulva spp.	0.56%

Tabl. 25: 2022: Molène - Ceinture à Fucus serratus au printemps

Dans la ceinture à *Himanthalia elongata | Bifurcaria bifurcata* nous avons retenu dix espèces caractéristiques et une espèce opportuniste, données dans le tableau 26 :

Espèces	Recouvrement
Espèces caractéristiques	
Bifurcaria bifurcata	5.83%
Calliblepharis jubata	9.44%
Chondrus crispus	16.11%
Cladophora rupestris	4.17%
Corallina elongata	3.61%
Himanthalia elongata	25.56%
Lithophyllum incrustans	7.22%
Lomentaria articulata	5.56%
Mastocarpus stellatus	11.94%
Osmundea pinnatifida	13.06%
Espèces opportunistes	
Ulva spp.	8.06%

Tabl. 26: 2022: Molène – Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps

Dans la ceinture à *Laminaria digitata*, nous avons retenu neuf espèces caractéristiques et deux espèces opportunistes, données dans le tableau 27 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	14.17%
Cryptopleura ramosa	5%
Himanthalia elongata	5.83%
Laminaria digitata	24.17%
Lithophyllum incrustans	27.50%
Lomentaria articulata	7.50%
Mastocarpus stellatus	16.94%
Osmundea pinnatifida	2.50%
Palmaria palmata	13.33%
Espèces opportunistes	
Ulva compressa	3.33%
Ulva spp.	2.78%

Tabl. 27: 2022: Molène - Ceinture à Laminaria digitata au printemps

➤ <u>Mission d'automne</u> :

Pour le site de Molène, les surfaces de chaque ceinture et les recouvrements moyens observés en automne, sont donnés dans le tableau 28 :

Ceinture	Surface	Recouvrement
Pc	250 m^2	80%
Fspi	700 m^2	80%
Fves	2800 m^2	50%
Fser	1800 m ²	85%
He/Bb	725 m ²	95%
Ld	800 m^2	95%

Tabl. 28: 2022: Molène – Surface et Recouvrement à l'automne

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et aucune espèce opportuniste, données dans le tableau 29 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	14.44%
Hildenbrandia rubra	31.67%
Pelvetia canaliculata	40%
Hydropunctaria maura	14.44%
Espèces opportunistes	

Tabl. 29: 2022: Molène - Ceinture à Pelvetia canaliculata à l'automne

Dans la ceinture à *Fucus spiralis*, nous avons retenu quatre espèces caractéristiques et deux espèces opportunistes, données dans le tableau 30 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	15%
Fucus spiralis	50.28%
Hildenbrandia rubra	40.83%
Hydropunctaria maura	11.67%
Espèces opportunistes	
Ulva compressa	0.83%
Ulva spp.	0.28%

Tabl. 30: 2022: Molène – Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu cinq espèces caractéristiques et deux espèces opportunistes, données dans le tableau 31 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	72.22%
Fucus vesiculosus	3.61%
Gelidium pusillum	3.61%
Phymatolithon lenormandii	13.61%
Mastocarpus stellatus	10.28%
Espèces opportunistes	
Ulva compressa	0.28%
Ulva spp.	0.28%

Tabl. 31: 2022: Molène - Ceinture à Ascophyllum nodosum à l'automne

Dans la ceinture à *Fucus serratus* nous avons retenu quatre espèces caractéristiques et aucune espèce opportuniste, données dans le tableau 32 :

Espèces	Recouvrement
Espèces caractéristiques	
Cladophora rupestris	20.83%
Fucus serratus	66.11%
Phymatolithon lenormandii	56.94%
Mastocarpus stellatus	30.83%
Espèces opportunistes	

Tabl. 32: 2022: Molène - Ceinture à Fucus serratus à l'automne

Dans la ceinture à *Himanthalia elongata | Bifurcaria bifurcata* nous avons retenu onze espèces caractéristiques et cinq espèces opportunistes, données dans le tableau 33 :

Espèces	Recouvrement
Espèces caractéristiques	
Asparagopsis armata	3.06%
Bifurcaria bifurcata	5.83%
Chondracanthus acicularis	21.94%
Chondrus crispus	8.61%
Cladophora rupestris	7.22%
Corallina elongata	5.56%
Cryptopleura ramosa	5.83%
Himanthalia elongata	43.61%
Lithophyllum incrustans	6.94%
Lomentaria articulata	5.56%
Mastocarpus stellatus	16.94%
Osmundea pinnatifida	6.11%
Espèces opportunistes	
Ulva compressa	0.56%
Ulva clathrata	0.28%
Herponema velutinum	0.28%
Polysiphonia sp	0.28%
Ulva spp.	4.16%

Tabl. 33 : 2022 : Molène – Ceinture à Himanthalia elongata / Bifurcaria bifurcata à l'automne

Dans la ceinture à *Laminaria digitata*, nous avons retenu neuf espèces caractéristiques et quatre espèces opportunistes, données dans le tableau 34 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	13.61%
Chondrus crispus	11.67%
Corallina elongata	2.50%
Himanthalia elongata	13.06%
Laminaria digitata	26.11%
Lithophyllum incrustans	25%
Lomentaria articulata	3.33%
Mastocarpus stellatus	20.83%
Palmaria palmata	8.89%
Espèces opportunistes	
Vertebrata martensiana	0.28%
Ectocarpales	0.28%
Ulva compressa	0.56%
Ulva spp.	3.33%

Tabl. 34 : 2022 : Molène – Ceinture à Laminaria digitata à l'automne

3) <u>Keragan - Fort Bloqué</u>: Le site de Keragan - Fort Bloqué est suivi pour la masse d'eau côtière GC34 – Lorient-Groix (Fig. 6).

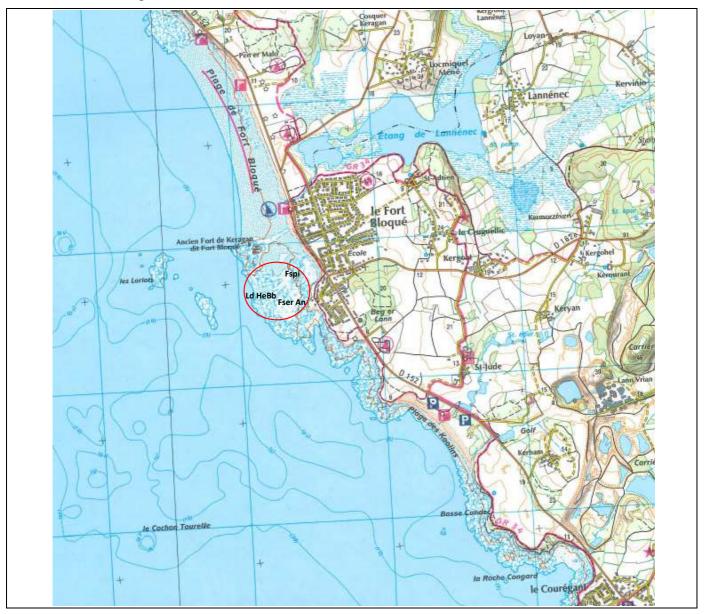


Fig. 6 : 2022 : Carte de localisation du site de Keragan - Fort Bloqué

➤ Mission de printemps :

Pour le site de Keragan, les surfaces de chaque ceinture et les recouvrements moyens observés au printemps, sont donnés dans le tableau 35 :

Ceinture	Surface	Recouvrement
Pc	/	/
Fspi	150 m ²	20%
An/Fves	1100 m ²	10%
Fser	2000 m ²	60%
He/Bb	900 m ²	85%
Ld	200 m ²	85%

Tabl. 35: 2022: Keragan – Surface et Recouvrement au printemps

La ceinture à *Pelvetia canaliculata* est absente sur le site où le haut d'estran est constitué par une plage.

Dans la ceinture à *Fucus spiralis*, une espèce caractéristique et deux espèces opportunistes ont été retenues, données dans le tableau 36 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	35.28%
Espèces opportunistes	
Ulva compressa	0.28%
Ulva spp.	2.5%

Tabl. 36: 2022: Keragan – Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu une espèce caractéristique et aucune espèce opportuniste, données dans le tableau 37 :

Espèces	Recouvrement
Espèces caractéristiques	
Phymatolithon lenormandii	3.33%
Espèces opportunistes	

Tabl. 37: 2022: Keragan – Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps

Dans la ceinture à *Fucus serratus* nous avons retenu sept espèces caractéristiques et trois espèces opportunistes, données dans le tableau 38 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	10.83%
Fucus serratus	39.44%
Gelidium spinosum	3.61%
Lomentaria articulata	16.94%
Mastocarpus stellatus	12.50%
Osmundea pinnatifida	4.44%
Rhodothamniella floridula	4.17%
Espèces opportunistes	
Ulva compressa	1.94%
Ulva clathrata	1.67%
Ulva spp.	20%

Tabl. 38: 2022: Keragan – Ceinture à Fucus serratus au printemps

Dans la ceinture à *Himanthalia elongata* nous avons retenu cinq espèces caractéristiques et une espèce opportuniste, données dans le tableau 39 :

Espèces	Recouvrement
Espèces caractéristiques	
Bifurcaria bifurcata	22.22%
Chondracanthus acicularis	11.67%
Corallina elongata	11.94%
Mastocarpus stellatus	5.28%
Rhodothamniella floridula	22.78%
Espèces opportunistes	
Ulva spp.	7.78%

Tabl. 39: 2022: Keragan – Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps

Dans la ceinture à *Laminaria digitata*, cinq espèces caractéristiques et une espèce opportuniste ont été retenues, données dans le tableau 40 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	6.94%
Chondrus crispus	13.89%
Corallina elongata	27.78%
Mastocarpus stellatus	4.17%
Saccorhiza polyschides	8.06%
Espèces opportunistes	
Ulva spp.	5%

Tabl. 40: 2022: Keragan – Ceinture à Laminaria digitata au printemps

➤ Mission d'automne :

Pour le site de Keragan, les surfaces de chaque ceinture et les recouvrements moyens observés en automne, sont donnés dans le tableau 41 :

Ceinture	Surface	Recouvrement
Pc	/	/
Fspi	150 m^2	40%
An	1100 m^2	20%
Fser	2000 m ²	65%
He/Bb	900 m^2	95%
Ld	200 m^2	85%

Tabl. 41: 2022: Keragan - Surface et Recouvrement à l'automne

Dans la ceinture à *Fucus spiralis*, nous avons retenu une espèce caractéristique et trois espèces opportunistes, données dans le tableau 42 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	30.28%
Espèces opportunistes	
Ulva compressa	1.94%
Ulva clathrata	7.5%
Ulva spp.	2.22%

Tabl. 42: 2022: Keragan – Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu aucune espèce caractéristique et quatre espèces opportunistes, données dans le tableau 43 :

Espèces	Recouvrement
Espèces caractéristiques	
Espèces opportunistes	
Ceramium echionotum	0.28%
Gayliella flaccida	0.28%
Ulva compressa	0.28%
Ulva spp.	0.56%

Tabl. 43: 2022: Keragan – Ceinture à Ascophyllum nodosum à l'automne

Dans la ceinture à *Fucus serratus* nous avons retenu six espèces caractéristiques et trois espèces opportunistes, données dans le tableau 44 :

Espèces	Recouvrement
Espèces caractéristiques	
Cladophora rupestris	6.11%
Fucus serratus	36.11%
Phymatolithon lenormandii	3.89%
Lomentaria articulata	7.78%
Mastocarpus stellatus	17.22%
Osmundea pinnatifida	2.78%
Espèces opportunistes	
Ceramium virgatum	0.28%
Ulva clathrata	7.78%
Ulva spp.	10.56%

Tabl. 44: 2022: Keragan – Ceinture à Fucus serratus à l'automne

Dans la ceinture à *Himanthalia elongata* nous avons retenu cinq espèces caractéristiques et cinq espèces opportunistes, données dans le tableau 45 :

Espèces	Recouvrement
Espèces caractéristiques	
Bifurcaria bifurcata	52.22%
Chondracanthus acicularis	5%
Corallina elongata	10%
Mastocarpus stellatus	6.11%
Rhodothamniella floridula	39.17%
Espèces opportunistes	
Gayliella flaccida	0.83%
Ulva compressa	0.28%
Ulva clathrata	2.22%
Melanothamnus harveyi	0.56%
Ulva spp.	0.83%

Tabl. 45: 2022: Keragan – Ceinture à *Himanthalia elongata* à l'automne

Dans la ceinture à *Laminaria digitata*, nous avons retenu six espèces caractéristiques et huit espèces opportunistes, données dans le tableau 46 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	3.89%
Chondrus crispus	10.28%
Corallina elongata	21.39%
Laminaria digitata	16.67%
Mastocarpus stellatus	10%
Saccorhiza polyschides	7.78%
Espèces opportunistes	
Ceramium ciliatum	0.56%
Ceramium echionotum	0.83%
Gayliella flaccida	0.56%
Ectocarpales	0.28%
Ulva clathrata	6.11%
Hincksia hincksiae	0.28%
Melanothamnus harveyi	2.22%
Ulva spp.	3.33%

Tabl. 46: 2022: Keragan - Ceinture à Laminaria digitata à l'automne

4) <u>Port Guen - Belle-Ile en Mer</u>: Le site de Port Guen à Belle-Ile est nouvellement suivi pour la masse d'eau côtière GC42 – Belle-Ile (Fig. 7). Cette station a été retenue à l'issue d'une prospection de terrain dédiée à la recherche d'une station dans la FRGC42 (Annexe 1)

Fig. 7: 2022: Carte de localisation du site de Belle-Ile

Pour le site de Belle-Ile, seule la saison de printemps a été échantillonnée.

Les surfaces de chaque ceinture et les recouvrements moyens observés sont donnés dans le tableau 47 :

Ceinture	Surface	Recouvrement
Pc	150 m^2	60%
Fspi	100 m ²	70%
An	250 m ²	70%
Fser	100 m ²	80%
He/Bb	250 m ²	100%

Tabl. 47: 2022: Belle-Ile - Surface et Recouvrement au printemps

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et aucune espèce opportuniste, données dans le tableau 48 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	9.44%
Fucus spiralis	14.17%
Hildenbrandia rubra	17.50%
Pelvetia canaliculata	46.39%
Espèces opportunistes	

Tabl. 48: 2022: Belle-Ile - Ceinture à Pelvetia canaliculata au printemps

Dans la ceinture à *Fucus spiralis*, nous avons retenu trois espèces caractéristiques et deux espèces opportunistes, données dans le tableau 49 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	6.94%
Fucus spiralis	51.39%
Hildenbrandia rubra	14.72%
Espèces opportunistes	
Ulva compressa	1.94%
Ulva spp.	0.28%

Tabl. 49: 2022: Belle-Ile – Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu trois espèces caractéristiques et une espèce opportuniste, données dans le tableau 50 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	68.89%
Phymatolithon lenormandii	38.61%
Mastocarpus stellatus	5%
Espèces opportunistes	
Ulva compressa	0.28%

Tabl. 50: 2022: Belle-Ile - Ceinture à Ascophyllum nodosum / Fucus vesiculosus au printemps

Dans la ceinture à *Fucus serratus* nous avons retenu six espèces caractéristiques et deuxespèces opportunistes, données dans le tableau 51 :

Espèces	Recouvrement
Espèces caractéristiques	
Corallina elongata	4.44%
Fucus serratus	58.06%
Phymatolithon lenormandii	10.28%
Lomentaria articulata	6.11%
Osmundea pinnatifida	5.28%
Espèces opportunistes	
Polysiphonia atlantica	0.28%
Ulva spp.	1.67%

Tabl. 51: 2022: Belle-Ile - Ceinture à Fucus serratus au printemps

Dans la ceinture à *Himanthalia elongata | Bifurcaria bifurcata* nous avons retenu quatre espèces caractéristiques et quatre espèces opportunistes, données dans le tableau 52 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	12.50%
Corallina elongata	30.28%
Himanthalia elongata	26.39%
Lithophyllum incrustans	7.78%
Espèces opportunistes	
Ceramium echionotum	0.28%
Ectocarpus fasciculatus	1.67%
Ulva compressa	0.28%
Ulva spp.	0.28%

Tabl. 52: 2022: Belle-Ile - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps

5) <u>Pénerf – Roch Viodec</u>: Le site de Pénerf – Roch Viodec est suivi pour la masse d'eau côtière GC44 – Baie de Vilaine (côte) (Fig. 8).

➤ Mission de printemps :

Pour le site de Penerf, les surfaces de chaque ceinture et les recouvrements moyens observés au printemps, sont donnés dans le tableau 53 :

Ceinture	Surface	Recouvrement
Pc	300 m^2	40%
Fspi	500 m ²	90%
An	4800 m^2	78%
Fser	3000 m^2	80%
He/Bb	800 m ²	70%
Ld	/	/

Tabl. 53: 2022: Pénerf – Surface et Recouvrement au printemps

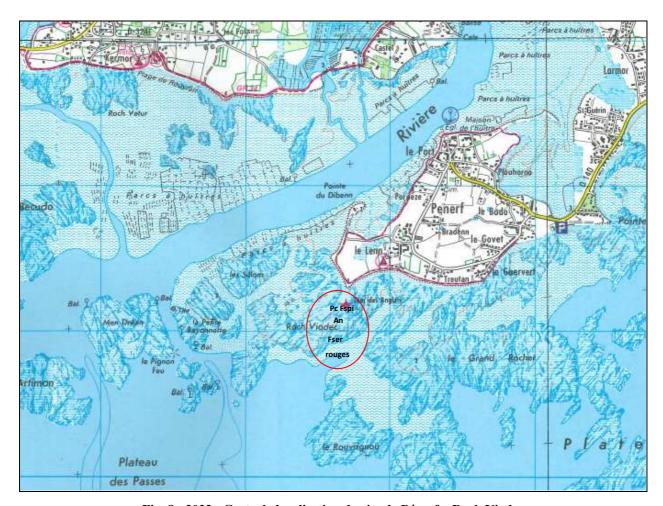


Fig. 8: 2022: Carte de localisation du site de Pénerf – Roch Viodec

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 54 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	4.44%
Fucus spiralis	15.28%
Hildenbrandia rubra	10.28%
Pelvetia canaliculata	40.93%
Espèces opportunistes	
Ulva compressa	0.56%

Tabl. 54: 2022: Pénerf - Ceinture à Pelvetia canaliculata au printemps

Dans la ceinture à *Fucus spiralis*, nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 55 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	3.33%
Catenella caespitosa	13.61%
Fucus spiralis	49.44%
Hildenbrandia rubra	13.33%
Espèces opportunistes	
Ulva compressa	4.72%

Tabl. 55: 2022: Pénerf - Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu six espèces caractéristiques et deux espèces opportunistes, données dans le tableau 56 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	33.61%
Fucus serratus	9.72%
Fucus vesiculosus	16.39%
Gelidium pusillum	4.44%
Phymatolithon lenormandii	11.11%
Mastocarpus stellatus	2.78%
Espèces opportunistes	
Ulva compressa	1.67%
Ulva spp.	3.61%

Tabl. 56: 2022: Pénerf - Ceinture à Ascophyllum nodosum au printemps

Dans la ceinture à *Fucus serratus* nous avons retenu cinq espèces caractéristiques et deux espèces opportunistes, données dans le tableau 57 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	3.89%
Fucus serratus	32.22%
Phymatolithon lenormandii	27.78%
Osmundea pinnatifida	8.61%
Rhodothamniella floridula	3.61%
Espèces opportunistes	
Ulva clathrata	0.28%
Ulva spp.	5.56%

Tabl. 57: 2022: Pénerf - Ceinture à Fucus serratus au printemps

Dans la ceinture à *Himanthalia elongata* nous avons retenu trois espèces caractéristiques et une espèce opportuniste, données dans le tableau 58 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	35%
Chondrus crispus	8.89%
Osmundea pinnatifida	5.56%
Espèces opportunistes	
Ulva spp.	1.67%

Tabl. 58 : 2022 : Pénerf – Ceinture à *Himanthalia elongata* au printemps

➤ <u>Mission d'automne</u>:

Pour le site de Pénerf, les surfaces de chaque ceinture et les recouvrements moyens observés en automne, sont donnés dans le tableau 59 :

Ceinture	Surface	Recouvrement
Pc	300 m^2	40%
Fspi	500 m^2	50%
An	4800 m^2	80%
Fser	3000 m^2	75%
He/Bb	800 m^2	70%
Ld	/	/

Tabl. 59: 2022: Pénerf - Surface et Recouvrement à l'automne

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 60 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	3.06%
Fucus spiralis	3.06%
Hildenbrandia rubra	9.44%
Pelvetia canaliculata	24.72%
Espèces opportunistes	
Ulva compressa	0.28%

Tabl. 60: 2022: Pénerf - Ceinture à Pelvetia canaliculata à l'automne

Dans la ceinture à *Fucus spiralis*, nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 61 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	6.67%
Catenella caespitosa	11.67%
Fucus spiralis	43.89%
Hildenbrandia rubra	7.50%
Espèces opportunistes	
Ulva compressa	0.56%

Tabl. 61: 2022: Pénerf – Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu deux espèces caractéristiques et deux espèces opportunistes, données dans le tableau 62 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	49.72%
Fucus vesiculosus	22.22%
Espèces opportunistes	
Ulva compressa	0.28%
Ulva spp.	0.28%

Tabl. 62: 2022: Pénerf - Ceinture à Ascophyllum nodosum à l'automne

Dans la ceinture à *Fucus serratus* nous avons retenu quatre espèces caractéristiques et trois espèces opportunistes, données dans le tableau 63 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	2.78%
Fucus serratus	37.78%
Phymatolithon lenormandii	7.22%
Rhodothamniella floridula	8.33%
Espèces opportunistes	
Ceramium echionotum	0.28%
Ulva compressa	1.11%
Ulva spp.	3.61%

Tabl. 63: 2022: Pénerf - Ceinture à Fucus serratus à l'automne

Dans la ceinture à *Himanthalia elongata* nous avons retenu deux espèces caractéristiques et cinq espèces opportunistes, données dans le tableau 64 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	40.83%
Chondrus crispus	2.78%
Espèces opportunistes	
Ceramium echionotum	0.56%
Ceramium secundatum	0.28%
Ulva compressa	0.28%
Melanothamnus harveyi	0.56%
Ulva spp.	6.67%

Tabl. 64: 2022: Pénerf – Ceinture à *Himanthalia elongata* à l'automne

6) <u>Le Croisic - St Goustan</u>: Le site du Croisic - St Goustan est suivi pour la masse d'eau côtière GC45 – Baie de Vilaine (large) (Fig. 9).

Fig. 9: 2022: Carte de localisation du site du Croisic

➤ <u>Mission de printemps</u> :

Pour le site du Croisic, les surfaces de chaque ceinture et les recouvrements moyens observés au printemps, sont donnés dans le tableau 65 :

Ceinture	Surface	Recouvrement
Pc	150 m ²	55%
Fspi	900 m ²	80%
An	2400 m ²	15%
Fser	1300 m ²	75%
He/Bb	500 m ²	80%
Ld	100 m ²	75%

Tabl. 65: 2022: Le Croisic – Surface et Recouvrement au printemps

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et une espèce opportuniste, données dans le tableau 66 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	9.44%
Fucus spiralis	27.78%
Hildenbrandia rubra	14.72%
Pelvetia canaliculata	20.56%
Espèces opportunistes	
Ulva compressa	0.83%

Tabl. 66: 2022: Le Croisic – Ceinture à Pelvetia canaliculata au printemps

Dans la ceinture à *Fucus spiralis*, nous avons retenu quatre espèces caractéristiques et trois espèces opportunistes, données dans le tableau 67 :

Espèces	Recouvrement
Espèces caractéristiques	
Ascophyllum nodosum	8.06%
Catenella caespitosa	6.39%
Fucus spiralis	41.11%
Hildenbrandia rubra	17.50%
Espèces opportunistes	
Ceramium virgatum	0.28%
Ulva compressa	1.67%
Ulva spp.	7.22%

Tabl. 67: 2022: Le Croisic – Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu une espèce caractéristique et deux espèces opportunistes, données dans le tableau 68 :

Espèces	Recouvrement
Espèces caractéristiques	
Mastocarpus stellatus	6.11%
Espèces opportunistes	
Ulva compressa	1.11%
Ulva spp.	3.89%

Tabl. 68: 2022: Le Croisic - Ceinture à Ascophyllum nodosum au printemps

Dans la ceinture à *Fucus serratus* nous avons retenu six espèces caractéristiques et une espèce opportuniste, données dans le tableau 69 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondrus crispus	6.11%
Corallina elongata	3.89%
Fucus serratus	60.28%
Phymatolithon lenormandii	15.83%
Lomentaria articulata	4.72%
Mastocarpus stellatus	2.78%
Espèces opportunistes	
Ulva spp.	17.50%

Tabl. 69: 2022: Le Croisic - Ceinture à Fucus serratus au printemps

Dans la ceinture à *Himanthalia elongata | Bifurcaria bifurcata* nous avons retenu quatre espèces caractéristiques et deux espèces opportunistes, données dans le tableau 70 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	30%
Chondrus crispus	3.89%
Corallina elongata	5%
Rhodothamniella floridula	17.78%
Espèces opportunistes	
Ulva clathrata	13.61%
Ulva spp.	2.50%

Tabl. 70: 2022: Le Croisic - Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps

Dans la ceinture à *Laminaria digitata*, nous avons retenu trois espèces caractéristiques et deux espèces opportunistes, données dans le tableau 71 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	40.28%
Chondrus crispus	7.50%
Corallina elongata	7.22%
Espèces opportunistes	
Ulva clathrata	13.33%
Ulva spp.	1.11%

Tabl. 71: 2022: Le Croisic – Ceinture à Laminaria digitata au printemps

➤ Mission d'automne :

Pour le site du Croisic, les surfaces de chaque ceinture et les recouvrements moyens observés en automne, sont donnés dans le tableau 72 :

Ceinture	Surface	Recouvrement
Pc	50 m^2	35%
Fspi	900 m ²	75%
An	2400 m ²	15%
Fser	1300 m ²	80%
He/Bb	500 m ²	80%
Ld	100 m ²	75%

Tabl. 72: 2022: Le Croisic – Surface et Recouvrement à l'automne

Dans la ceinture à *Pelvetia canaliculata* nous avons retenu quatre espèces caractéristiques et aucune espèce opportuniste, données dans le tableau 73 :

Espèces	Recouvrement
Espèces caractéristiques	
Catenella caespitosa	16.94%
Fucus spiralis	2.50%
Hildenbrandia rubra	33.33%
Pelvetia canaliculata	11.67%
Espèces opportunistes	

Tabl. 73: 2022: Le Croisic – Ceinture à Pelvetia canaliculata à l'automne

Dans la ceinture à *Fucus spiralis*, nous avons retenu deux espèces caractéristiques et deux espèces opportunistes, données dans le tableau 74 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus spiralis	41.11%
Hildenbrandia rubra	26.39%
Espèces opportunistes	
Ulva clathrata	0.28%
Ulva spp.	0.56%

Tabl. 74: 2022: Le Croisic – Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Ascophyllum nodosum* nous avons retenu aucune espèce caractéristique et une espèce opportuniste, données dans le tableau 75 :

Espèces	Recouvrement
Espèces caractéristiques	
Espèces opportunistes	
Ulva spp.	1.39%

Tabl. 75: 2022: Le Croisic – Ceinture à Ascophyllum nodosum à l'automne

Dans la ceinture à *Fucus serratus* nous avons retenu trois espèces caractéristiques et cinq espèces opportunistes, données dans le tableau 76 :

Espèces	Recouvrement
Espèces caractéristiques	
Fucus serratus	54.17%
Lomentaria articulata	6.39%
Osmundea pinnatifida	6.11%
Espèces opportunistes	
Ceramium ciliatum	0.28%
Ceramium virgatum	3.61%
Ulva compressa	0.28%
Ulva clathrata	0.28%
Ulva spp.	9.17%

Tabl. 76: 2022: Le Croisic – Ceinture à Fucus serratus à l'automne

Dans la ceinture à Himanthalia elongata / Bifurcaria bifurcata nous avons retenu trois espèces caractéristiques et quatre espèces opportunistes, données dans le tableau 77 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	6.61%
Osmundea pinnatifida	4.72%
Rhodothamniella floridula	14.44%
Espèces opportunistes	
Ceramium virgatum	6.67%
Ulva clathrata	1.39%
Ophidocladus simpliciusculus	1.94%
Ulva spp.	3.89%

Tabl. 77: 2022: Le Croisic – Ceinture à Himanthalia elongata / Bifurcaria bifurcata à l'automne

Dans la ceinture à Laminaria digitata nous avons retenu deux espèces caractéristiques et quatre espèces opportunistes, données dans le tableau 78 :

Espèces	Recouvrement
Espèces caractéristiques	
Chondracanthus acicularis	26.94%
Osmundea pinnatifida	10.28%
Espèces opportunistes	
Ceramium ciliatum	0.28%
Ceramium virgatum	4.17%
Ulva clathrata	0.56%
Ulva spp.	1.67%

Tabl. 78: 2022: Le Croisic - Ceinture à Laminaria digitata à l'automne

7) Pointe St Gildas: Le site de la Pointe St Gildas est suivi pour la masse d'eau côtière GC46 – Loire (large) (Fig. 10).

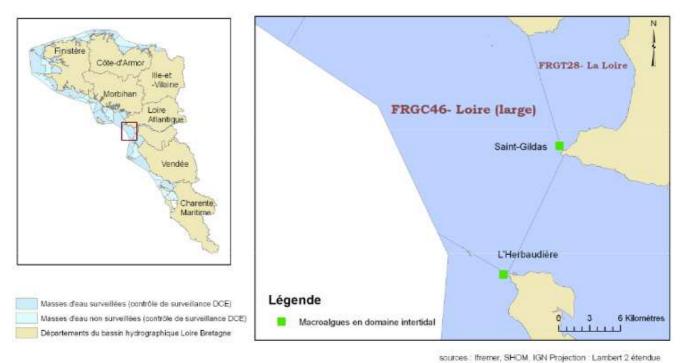


Fig. 10 : 2022 : Carte de localisation du site de St Gildas et de l'Herbaudière (source: Ifremer, Shom, IGN Projection: Lambert 2 étendue)

En plus des ceintures classiques d'observation, une ceinture à *Osmundea pinnatifida* a été observée sur le site de la Pointe de St Gildas et étudiée ; cependant elle n'entre pas en compte dans le calcul de l'indice écologique.

➤ <u>Mission de printemps</u> :

Pour le site de St Gildas (Fig. 11), les surfaces de chaque ceinture et les recouvrements moyens observés au printemps sont donnés dans le tableau 79.

Fig. 11: 2022: Relevés du site de la Pointe St Gildas au printemps

Ceinture	Surface	Recouvrement
Pc	20 m^2	10%
Fspi	150 m ²	80%
An	540 m^2	100%
Fser	200 m^2	90%
He	350 m^2	100%
Ld	?	?

Tabl. 79: 2022: Pte St Gildas - Surface et Recouvrement au printemps

Lors de cette campagne, la houle importante n'a pas permis l'étude de la ceinture à laminaires. Sur ce site cette ceinture est souvent inaccessible malgré des gros coefficients de marée.

Dans la ceinture à *Pelvetia canaliculata* quatre espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 80 :

		Ce	inture	à <i>Pel</i> v	etia ca	nalicul	lata			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Catenella caespitosa	<0,5	2	5					2		
Fucus spiralis	0,5-<30	3	1			1				
Hildenbrandia rubra	<0,5	5	5	5	5	5	5	3	2	3
Pelvetia canaliculata	0,5-<30	4	5	4	2	3	2	3	2	1
espèce opportuniste										
Ulva	0,5-<30							2	2	
Autres algues										
Chaetomorpha	<0,5				1		2			
Porphyra	0,5-<30			2	3	2	2	2	3	4

Tabl. 80: 2022: Pte St Gildas – Ceinture à Pelvetia canaliculata au printemps

Dans la ceinture à *Fucus spiralis* deux espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 81 :

			Ceint	ure à <i>l</i>	Tucus s	piralis	1			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ascophyllum nodosum*	0,5-<30						2	1		
Fucus spiralis	0,5-<30	4	3	4	4	3	5	4	4	4
Fucus spiralis	30-<100				3	3	2		4	
Hildenbrandia rubra	0,5-<30	2	4	3	4	4	3	3	5	5
espèce opportuniste										
Ulva	0,5-<30				2					
Autres algues										
Chaetomorpha	<0,5		2	2						
Chaetomorpha	0,5-<30	4								
Phymatolithon lenormandii	<0,5							2		
Porphyra	0,5-<30	2						4	2	

Tabl. 81: 2022: Pte St Gildas - Ceinture à Fucus spiralis au printemps

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Ascophyllum nodosum* trois espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 82 :

		Cei	nture	à <i>Asco</i> j	phyllur	n nodo	sum			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ascophyllum nodosum	0,5-<30	4	3		2		2	2	3	2
Ascophyllum nodosum	30-<100	1						3		4
Cladophora*	30-<100	1		2				1		
Fucus vesiculosus	0,5-<30		1		2	1	3	1		1
Fucus vesiculosus	30-<100			3						
Lithophyllum incrustans*	<0,5	1		1						
Mastocarpus stellatus	0,5-<30							3	2	
espèce opportuniste										
Ulva	0,5-<30	1	2							
Autres algues										
Osmundea pinnatifida	0,5-<30	2	2	4	3	4	5	2	2	2

Tabl. 82: 2022: Pte St Gildas - Ceinture à Ascophyllum nodosum au printemps

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Fucus serratus* deux espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 83 :

			Ceint	ture à l	Fucus	serratu	ıs			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ellisolandia elongata*	30-<100					1				1
Fucus serratus	0,5-<30	4	3	2	2	2	1			1
Fucus serratus	30-<100			4		3	2	3	4	3
Osmundea pinnatifida	0,5-<30	3	2	4	2		3	1		
Phymatolithon lenormandii*	<0,5							1	1	1
espèce opportuniste										
Ceramium	0,5-<30			1	1	1	1			
Ulva	0,5-<30	1	1		1	1	2			
Autres algues										
Chondracanthus acicularis	0,5-<30				1					
Cladostephus spongiosus	0,5-<30							1	1	
Himanthalia elongata	0,5-<30	1								
Himanthalia elongata	30-<100			1						

Tabl. 83: 2022: Pte St Gildas - Ceinture à Fucus serratus au printemps

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Himanthalia elongata* cinq espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 84 :

			Ceir	ture à	Hima	nthalia	!			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ellisolandia elongata	0,5-<30	1	3	2	1	2	2	3	3	2
Himanthalia elongata	0,5-<30	2	2	2	2	2	2			3
Himanthalia elongata	30-<100	3	3	3	4	4	3	2	2	
Lithophyllum incrustans	<0,5							5		
Lomentaria articulata	0,5-<30	2		2						
Mastocarpus stellatus*	<0,5							2		
Osmundea pinnatifida	0,5-<30	3	3	3				3		
espèce opportuniste										
Ceramium	0,5-<30			1						
Ulva	0,5-<30	2	3	3		2	1	1	2	2
Autres algues										
Acrosorium ciliolatum	0,5-<30		1	2	1	2	1			
Dictyota dichotoma	0,5-<30		1		2			1		2
Hypoglossum hypoglossoides	0,5-<30	2	1	1		3	2			

Tabl. 84 : 2022 : Pte St Gildas – Ceinture à *Himanthalia elongata* au printemps

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la zone à *Osmundea pinnatifida*, trois espèces ont été observées dont une opportuniste (Tabl. 85). Cette ceinture n'est étudiée que sur le site de Saint Gildas. Elle n'entre pas dans le calcul de l'indice DCE.

		Ceinture à Osmundea											
espèce opportuniste	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3			
Ulva	0,5-<30				3	4	3						
Autres algues													
Osmundea hybrida	0,5-<30								1				
Osmundea pinnatifida	0,5-<30	3	3	3	3	3	3	3	4	3			

Tabl. 85: 2022: Pte St Gildas – Ceinture à Osmundea pinnatifida au printemps

➤ <u>Mission d'automne</u>:

Pour le site de St Gildas (Fig. 12), les surfaces de chaque ceinture et les recouvrements moyens observés à l'automne sont donnés dans le tableau 86.

Fig. 12: 2022: Relevés du site de la Pointe St Gildas à l'automne

Ceinture	Surface	Recouvrement
Pc	20 m^2	10%
Fspi	30 m^2	50%
An	400 m^2	75%
Fser	200 m^2	90%
Не	350 m^2	100%
Ld	100 m^2	100%

Tabl. 86: 2022: Pte St Gildas – Surface et Recouvrement à l'automne

Dans la ceinture à *Pelvetia canaliculata* deux espèces caractéristiques et aucune espèce opportuniste ont été identifiées, données dans le tableau 87 :

		Cei	nture	à <i>Pel</i>	vetia	canal	iculat	а					
	Strate (cm)	Strate (cm) 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3											
Espèce caractéristique													
Catenella caespitosa	<0,5	2	2				1	2		1			
Pelvetia canaliculata	0,5-<30	2	2	2	2	2	1	2	1	2			

Tabl. 87: 2022: Pte St Gildas - Ceinture à Pelvetia canaliculata à l'automne

Dans la ceinture à *Fucus spiralis* trois espèces caractéristiques et aucune espèce opportuniste ont été identifiées, données dans le tableau 88 :

	Ceinture à Fucus spiralis											
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3		
Espèce caractéristique												
Catenella caespitosa	<0,5		3					2	2	2		
Fucus spiralis	0,5-<30	3	3	1	2	2	2	2	2	2		
Hildenbrandia rubra	<0,5					2	2	2	2			
Autres algues												
Fucus vesiculosus	0,5-<30				1							

Tabl. 88: 2022: Pte St Gildas – Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Ascophyllum nodosum* quatre espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 89 :

		Cein	ture	à <i>Asc</i>	ophy	ıllum r	nodosi	ım		
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Ascophyllum nodosum	0,5-<30	2	2		3		3	2	3	
Ascophyllum nodosum	30-<100	3								
Cladophora rupestris	0,5-<30		2	1	1				2	2
Ellisolandia elongata *	0,5-<30					1				
Fucus vesiculosus	0,5-<30		2	2		3	2	2	2	
Fucus vesiculosus	30-<100			2						
Mastocarpus stellatus *	0,5-<30		2							
Phymatolithon lenormandii	<0,5	5		4		2	2	2	2	3
Espèce opportuniste										
Ulva	0,5-<30			1		2	2	1	2	
Autres algues										
Caulacanthus	<0,5		2			1	1			
Osmundea pinnatifida	0,5-<30	1		1	1	4	2	2	2	2

Tabl. 89: 2022: Pte St Gildas - Ceinture à Ascophyllum nodosum à l'automne

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Fucus serratus* trois espèces caractéristiques et trois espèces opportunistes ont été identifiées, données dans le tableau 90 :

		C	eintur	e à F	ucus s	errat	us			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Chondrus crispus *	0,5-<30							1		2
Cladophora rupestris *	0,5-<30				1					1
Ellisolandia elongata	0,5-<30	2	2	2	1	1	2	2		2
Fucus serratus	0,5-<30	3	3	3	3		2	2	3	2
Fucus serratus	30-<100	2		2	2					
Lomentaria articulata *	0,5-<30			1						
Mastocarpus stellatus *	0,5-<30			1						
Osmundea pinnatifida	0,5-<30	2	2	3	4	2	2	2	2	2
Espèce opportuniste										
Ceramium	0,5-<30		2	2	2		2	3	3	3
Ulva spp.	0,5-<30		2	2	2	2	3	3	2	3

Ulva compressa	0,5-<30			2	4	2	3	3	2
Autres algues									
Callithamnion	0,5-<30								1
Chondracanthus acicularis	0,5-<30			1					
Codium	0,5-<30								1
Dictyota	0,5-<30		2						
Hypoglossum hypoglossoides	0,5-<30						2		

Tabl. 90 : 2022 : Pte St Gildas – Ceinture à Fucus serratus à l'automne

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Himanthalia elongata* six espèces caractéristiques et trois espèces opportunistes ont été identifiées, données dans le tableau 91 :

		C	Ceintu	ire à <i>F</i>	Himar	nthali	а			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Chondracanthus acicularis	0,5-<30				2	2				2
Chondrus crispus	0,5-<30	2				2				
Ellisolandia elongata	0,5-<30	2	2	2	2	2	2	2	2	
Himanthalia elongata	>100	2	2	2	2	2				
Himanthalia elongata	0,5-<30	2	2	2	2	2	2	2	2	2
Lomentaria articulata	0,5-<30			2		2	2	2		1
Osmundea pinnatifida	0,5-<30	2	2	3	2	2	3	2	2	2
Espèce opportuniste										
Ceramium	0,5-<30	2	3	3	4	3	4	3	3	3
Ulva spp.	0,5-<30	2	2	2	2	3	2	2	2	3
Ulva compressa	0,5-<30					2				2
Autres algues										
Callithamnion	0,5-<30	2								
Cladostephus spongiosus	0,5-<30							1		
Codium	0,5-<30	1		1						
Dictyota dichotoma	0,5-<30	2		2	2	2	2	2	3	
Fucus serratus	0,5-<30			2				2	2	2
Hypoglossum hypoglossoides	0,5-<30	1	2	2						2

Tabl. 91 : 2022 : Pte St Gildas – Ceinture à *Himanthalia elongata* à l'automne

Dans la ceinture à *Laminaria digitata* six espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 92 :

			Cein	ture a	à Lam	inario	מ			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Chondracanthus acicularis	0,5-<30			2				2		
Chondrus crispus *	0,5-<30							2		
Ellisolandia elongata	0,5-<30	4	4	3	2	3	3	2	3	2
Himanthalia elongata	>100		2	2	2	2			2	2
Himanthalia elongata	0,5-<30	2	2	2	2	2			2	2
Lithophyllum incrustans	<0,5	2		2						
Palmaria palmata	0,5-<30	1	2					2	2	2
Saccorhiza polyschides	0,5-<30	2	2	2	3	4	2	2	2	2

Espèce opportuniste										
Ceramium	0,5-<30			2					2	2
Ulva	0,5-<30	2	2	2	2	2	2	2	2	2
Autres algues										
Acrosorium ciliolatum	0,5-<30	1								
Callithamnion	0,5-<30	2		2		2				
Cladostephus spongiosus	0,5-<30				1					2
Codium	0,5-<30	2	2							
Cryptopleura ramosa	0,5-<30						2	1	1	1
Dictyota dichotoma	0,5-<30			1	2					
Gastroclonium ovatum	0,5-<30		2					1	1	
Gracilaria	0,5-<30									2
Gymnogongrus crenulatus	0,5-<30							2		2
Hypoglossum hypoglossoides	0,5-<30	2	1	1			2	2	2	2
Rhodymenia pseudopalmata	0,5-<30						1			

Tabl. 92 : 2022 : Pte St Gildas – Ceinture à Laminaria digitata à l'automne

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

8) <u>L'Herbaudière</u>:

Le site de l'Herbaudière est le second site suivi pour la masse d'eau côtière GC46 – Loire (large) (Fig. 13).

➤ <u>Mission de printemps</u> :

Pour le site de l'Herbaudière (Fig. 13), les surfaces de chaque ceinture et les recouvrements moyens observés au printemps sont donnés dans le tableau 93.

Ceinture	Surface	Recouvrement
Pc	20 m^2	25%
Fspi	300 m^2	75%
An	100 m ²	25%
Fser	1000 m ²	80%
Ld	400 m^2	75%

Tabl. 93: 2022: L'Herbaudière - Surface et Recouvrement au printemps

Fig. 13: 2022: Relevés du site de l'Herbaudière au printemps

Dans la ceinture à *Pelvetia canaliculata* quatre espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 94 :

	Ceinture à Pelvetia canaliculata												
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3			
Catenella caespitosa	<0,5	2	2	2				2	2	3			
Hildenbrandia rubra	<0,5			2	2	1	2	2	2	2			
Pelvetia canaliculata	0,5-<30				2	2	2	2	1	2			
Verrucaria maura	<0,5	2	2						1				

Tabl. 94 : 2022 : L'Herbaudière - Ceinture à Pelvetia canaliculata au printemps

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Fucus spiralis* une espèce caractéristique et une espèce opportuniste ont été identifiées, données dans le tableau 95 :

			Cein	ture à	Fucus	spirali	S			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Fucus spiralis	0,5-<30	2	2	3	2		3	1		
Fucus spiralis	30-<100				2	3		1	3	
espèce opportuniste										
Ulva	0,5-<30	5	3	5	5	5	5	5	5	4
Autres algues										
Fucus vesiculosus	0,5-<30							2	2	2
Fucus vesiculosus	30-<100							1		5
Porphyra	0,5-<30	1					1	2		
Rhodothamniella floridula	<0,5								2	2

Tabl. 95 : 2022 : L'Herbaudière- Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* deux espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 96 :

		C	einture	e à Asc	ophyllu	ım nod	osum			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ascophyllum nodosum	0,5-<30								2	
Ascophyllum nodosum	30-<100	3	4	2				3		
Fucus vesiculosus	0,5-<30		2		5	5	5	2	3	3
Fucus vesiculosus	30-<100									3
espèce opportuniste										
Ulva	0,5-<30		1	2	4	3	3	4	5	5
Autres algues										
Osmundea pinnatifida	0,5-<30				1					1
Porphyra	0,5-<30				1	1				

Tabl. 96: 2022: L'Herbaudière – Ceinture à Ascophyllum nodosum au printemps

 $Esp\`ece$ * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Fucus serratus* cinq espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 97 :

			Cein	ture à	Fucus s	erratu	s			
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Chondrus crispus*	0,5-<30		1	1						
Cladophora*	0,5-<30		1							
Fucus serratus	0,5-<30	2	3	5				2	2	2
Fucus serratus	30-<100	5	5	3					2	3
Gelidium pulchellum*	0,5-<30							1	1	1
Lomentaria articulata	0,5-<30	2	1	2						
Osmundea pinnatifida	0,5-<30	2		2						
Phymatolithon lenormandii	<0,5	2		2					2	
Rhodothamniella floridula	<0,5	3	5	2						
espèce opportuniste										
Ulva spp.	0,5-<30								2	
Ulva compressa	0,5-<30	1		2	5	5	5	3	1	3
Autres algues										
Callithamnion tetricum	0,5-<30			2						
Cladostephus spongiosus	0,5-<30		2	1						
Fucus vesiculosus	30-<100							2	2	

Tabl. 97: 2022: L'Herbaudière – Ceinture à Fucus serratus au printemps

Dans la ceinture à *Laminaria digitata* quatre espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 98 :

			C	einture	e à <i>Lam</i>	inaria				
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Chondracanthus acicularis	0,5-<30	4	4	4	2	2	2	2	2	2
Ellisolandia elongata	0,5-<30	3	2	2						
Lithophyllum incrustans	<0,5		1		1	1	1	2		2
Mastocarpus stellatus*	0,5-<30							1		
Osmundea pinnatifida	0,5-<30	3	1	2	5	5	4	2	2	2
espèce opportuniste										
Ceramium	0,5-<30	1	2		1					
Ulva	0,5-<30	2	1	2	3	2	2	2	1	2
Autres algues										
Chondria coerulescens	0,5-<30	2								
Halopithys incurva	0,5-<30			1						
Halurus equisetifolius	0,5-<30				1	2	1	1	2	2
Hypoglossum hypoglossoides	0,5-<30	1								
Rhodothamniella floridula	<0,5	1						1	1	
Sargassum muticum	0,5-<30	1	1							_

Tabl. 98 : 2022 : Pte St Gildas – Ceinture à *Laminaria digitata* au printemps

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

➤ <u>Mission d'automne</u>:

Pour le site de l'Herbaudière (Fig. 14), les surfaces de chaque ceinture et les recouvrements moyens observés à l'automne sont donnés dans le tableau 99.

Ceinture	Surface	Recouvrement
Pc	100 m^2	3%
Fspi	20 m ²	10%
An	250 m ²	40%
Fser	400 m ²	50%
Ld	150 m ²	100%

Tabl. 99: 2022: L'Herbaudière – Surface et Recouvrement à l'automne

Fig. 14 : 2022 : Relevés du site de l'Herbaudière à l'automne

Dans la ceinture à *Pelvetia canaliculata* trois espèces caractéristiques et aucune espèce opportuniste ont été identifiées, données dans le tableau 100 :

	Ceinture à <i>Pelvetia canaliculata</i>												
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3			
Espèce caractéristique													
Catenella caespitosa	<0,5	3	2	4	3	4		3	2	2			
Hildenbrandia rubra	<0,5	3	3	2	2			2	3	3			
Lichina pygmaea*	<0,5						2						
Pelvetia canaliculata	0,5-<30	2						2	2				
Verrucaria maura*	<0,5						1	1		1			

Tabl. 100: 2022: L'Herbaudière - Ceinture à Pelvetia canaliculata à l'automne

 $Esp\`ece$ * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Fucus spiralis* deux espèces caractéristiques et aucune espèce opportuniste ont été identifiées, données dans le tableau 101 :

		(Ceintu	ire à F	ucus	spira	lis			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Fucus spiralis	0,5-<30		3	2		2	4		2	
Fucus spiralis	30-<100	3			2	2	2	2	2	4
Hildenbrandia rubra	<0,5	2	1	2	1	1	1		1	2
Autres algues										
Chaetomorpha	0,5-<30	3	2	2		2	1	1	1	3
Cladostephus spongiosus	0,5-<30	2							1	2
Lithophyllum incrustans	<0,5	1								

Tabl. 101 : 2022 : L'Herbaudière – Ceinture à Fucus spiralis à l'automne

Dans la ceinture à *Ascophyllum nodosum* trois espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 102 :

		Ceint	ure à	Asco	phyllu	ım no	dosui	m		
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Ascophyllum nodosum	30-<100	4			3	2		2	4	2
Cladophora rupestris	0,5-<30				1	2	2		3	
Fucus vesiculosus	0,5-<30	2	3	3	1			3	3	3
Fucus vesiculosus	30-<100					3	3	2		2
Espèce opportuniste										
Ulva	<0,5		5	5						
Ulva	0,5-<30	1			4	2	2			
Autres algues										
Chaetomorpha	0,5-<30	2		1						
Cladostephus spongiosus	0,5-<30	1			2		2		1	
Hildenbrandia rubra	<0,5	2				2	1	1		

Tabl. 102: 2022: L'Herbaudière - Ceinture à Ascophyllum nodosum à l'automne

Dans la ceinture à *Fucus serratus* quatre espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 103 :

		(Ceint	ıre à l	Fucus	serra	itus			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Cladophora rupestris	0,5-<30	1							1	1
Fucus serratus	0,5-<30	2	2	1						
Fucus serratus	30-<100	4	5	5	3	2		3	4	4
Gelidium spinosum	0,5-<30									1
Lithophyllum incrustans	<0,5		2			2				1
Mastocarpus stellatus	0,5-<30	1		2						
Osmundea pinnatifida	0,5-<30	1	1	2	1	2				
Rhodothamniella floridula	<0,5	2	2	3					2	2
Espèce opportuniste										
Ceramium	<0,5	2	2	1						
Ulva	<0,5						4			
Ulva	0,5-<30	1	1			2	2	1		1
Autres algues										
Chaetomorpha	0,5-<30				2				1	
Cladostephus spongiosus	0,5-<30	2	2					2	2	
Fucus vesiculosus	0,5-<30				1	2		4	4	3
Fucus vesiculosus	30-<100				3	3		3	3	2
Gracilaria	0,5-<30	1	1	2						
Hildenbrandia rubra	<0,5					2				

Tabl. 103: 2022: L'Herbaudière – Ceinture à Fucus serratus à l'automne

Espèce * : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Laminaria digitata* cinq espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 104 :

unices, données dans le tableau 104.	0,5-<30										
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3	
Espèce caractéristique											
Chondracanthus acicularis	0,5-<30	5	5	4	2	2	2		3	4	
Chondrus crispus	0,5-<30						1	2	1		
Ellisolandia elongata	0,5-<30		2	2							
Mastocarpus stellatus	0,5-<30	2	2	1		2	2	2	2	3	
Osmundea pinnatifida	0,5-<30	1	1	1				2	1	1	
Palmaria palmata	0,5-<30				1						
Saccorhiza polyschides	0,5-<30				2						
Saccorhiza polyschides	30-<100					2		2	2	1	
Espèce opportuniste											
Ceramium	0,5-<30	1	1	2	2	2	2	3	3	2	
Ulva	0,5-<30		1	1	2		2	1		1	
Autres algues											
Chondria coerulescens	0,5-<30	2	4	1	1	1			1		
Cladostephus spongiosus	0,5-<30			1	1		3			3	
Desmarestia ligulata	30-<100									2	
Dictyota dichotoma	0,5-<30		1	1	1			2			
Halopteris filicina	0,5-<30							2			
Padina pavonica	0,5-<30			1							
Taonia atomaria	0,5-<30							1	1		

Tabl. 104 : 2022 : L'Herbaudière – Ceinture à Laminaria digitata à l'automne

9) Sabias (Ile d'Yeu):

Le site des Sabias est le site suivi pour la masse d'eau côtière GC47 – Ile d'Yeu (Fig. 15).

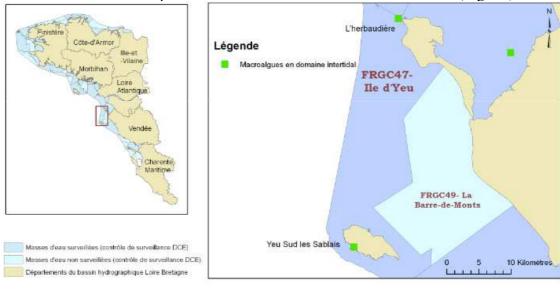


Fig. 15: 2022: Carte de localisation du site des Sabias (Ile d'Yeu) (source: Ifremer, Shom, IGN Projection: Lambert 2 étendue)

➤ <u>Mission de printemps</u> :

Pour le site des Sabias (Fig. 16), les surfaces de chaque ceinture et les recouvrements moyens observés au printemps sont donnés dans le tableau 105. Lors de la campagne de printemps 2022, la houle importante n'a pas permis l'étude de la ceinture à laminaires.

Ceinture	Surface	Recouvrement
Pc	100 m^2	30%
Fspi	350 m^2	30%
An	30 m^2	70%
Fser	50 m ²	70%
Не	150 m ²	100%
Ld	?	?

Tabl. 105: 2022: Sabias - Surface et Recouvrement au printemps

Fig. 16: 2022: Relevés du site des Sabias au printemps

Dans la ceinture à *Pelvetia canaliculata* deux espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 106 :

		(Ceintu	re à P	elvetia	canal	iculata	ı		
	Strate									
Espèce caractéristique	(cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Fucus spiralis	0,5-<30					1	2	2		
Hildenbrandia rubra*	<0,5	2	1							
Pelvetia canaliculata	0,5-<30	5	5	2	5	5	5	3	2	2
Verrucaria maura*	<0,5			1						2
espèce opportuniste										
Ulva	0,5-<30		1							

Tabl. 106: 2022: Sabias - Ceinture à Pelvetia canaliculata au printemps

Espèce* : espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Fucus spiralis* une espèce caractéristique et une espèce opportuniste ont été identifiées, données dans le tableau 107 :

			Cei	nture	à Fuci	us spir	alis			
	Strate									
Espèce caractéristique	(cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Fucus spiralis	0,5-<30	4	3	3	2	2	1	3	2	2
espèce opportuniste										
Ulva	0,5-<30	2	1	1				2	2	1
Autres algues										
Chondracanthus acicularis	0,5-<30		2	1					2	2
Gelidium pusillum	<0,5	1							2	2
Mastocarpus stellatus	0,5-<30			1						
Osmundea pinnatifida	0,5-<30	2	2	2						
Rhodothamniella floridula	<0,5		5	3				2		

Tabl. 107: 2022: Sabias - Ceinture à Fucus spiralis au printemps

Dans la ceinture à *Ascophyllum nodosum* cinq espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 108 :

		C	Ceintui	e à As	cophyl	llum n	odosui	m		
	Strate									
Espèce caractéristique	(cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ascophyllum nodosum	0,5-<30				2					
Ascophyllum nodosum	30-<100							2		
Fucus vesiculosus	0,5-<30	5	3	4	2	2	4	4	4	2
Gelidium pusillum	0,5-<30	2	1	2						1
Mastocarpus stellatus	0,5-<30					1	2	1		1
Rhodothamniella floridula	<0,5							4		2
espèce opportuniste										
Ulva	0,5-<30	2	2	2	3	2	2	2		2
Autres algues										
Osmundea pinnatifida	0,5-<30	1	3	4	2	1	4	1	2	2

Tabl. 108: 2022: Sabias - Ceinture à Ascophyllum nodosum au printemps

Dans la ceinture à *Fucus serratus* cinq espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 109 :

			Cei	nture à	à Fucu	is serre	atus			
	Strate									
Espèce caractéristique	(cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Fucus serratus	>100					2				
Fucus serratus	0,5-<30		2	2	2	2	2	3	2	3
Fucus serratus	30-<100	2	3	2	3		3			
Lomentaria articulata	0,5-<30	2	2		2	2	2	2	2	
Mastocarpus stellatus	0,5-<30		1	2	2					1
Osmundea pinnatifida	0,5-<30	2	4	5	4	2	4	4	3	4
Phymatolithon lenormandii	<0,5								2	
Rhodothamniella floridula	<0,5			2	2					
espèce opportuniste										
Ulva	0,5-<30	2	1	2	1	2	2	1		1
Autres algues										
Chondracanthus acicularis	0,5-<30				2		2			1

Tabl. 109: 2022: Sabias - Ceinture à Fucus serratus au printemps

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE

Dans la ceinture à *Himanthalia elongata* huit espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 106 :

			Ce	inture	à Hin	ıantha	lia			
	Strate									
Espèce caractéristique	(cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Bifurcaria bifurcata	0,5-<30	2	4	2	3	3	5	4		3
Calliblepharis jubata	0,5-<30		2	2				2		1
Chondracanthus acicularis	0,5-<30	3	2	4	5	3	3		2	2
Chondrus crispus	0,5-<30	1	2	2				1	1	1
Cryptopleura ramosa*	0,5-<30			1						
Ellisolandia elongata*	0,5-<30								1	
Gelidium spinosum*	0,5-<30						1			
Lomentaria articulata	0,5-<30	2	2	2				2	2	2
Mastocarpus stellatus	<0,5	2						2	2	2
Osmundea pinnatifida	0,5-<30	2	2		2	3	2	2	5	5
Rhodothamniella floridula	<0,5				2	2	3			
espèce opportuniste										
Ceramium	0,5-<30		2							
Ulva	0,5-<30	2	1	1	1	1	2	2	2	2
Autres algues										
Gastroclonium ovatum	0,5-<30			1			1		1	
Phymatolithon lenormandii	<0,5	1								
Rhodymenia										
pseudopalmata	0,5-<30							1		

Tabl. 110: 2022: Sabias – Ceinture à *Himanthalia elongata / Bifurcaria bifurcata* au printemps

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

➤ <u>Mission d'automne</u>:

Pour le site de Sabias (Fig. 17), les surfaces de chaque ceinture et les recouvrements moyens observés à l'automne sont donnés dans le tableau 111.

Fig. 17: 2022: Relevés du site des Sabias à l'automne

Ceinture	Surface	Recouvrement
Pc	50 m^2	20%
Fspi	30 m^2	40%
An	300 m^2	80%
Fser	200 m^2	60%
Не	100 m ²	95%
Ld	10 m^2	100%

Tabl. 111: 2022: Sabias – Surface et Recouvrement à l'automne

Dans la ceinture à *Pelvetia canaliculata* deux espèces caractéristiques et aucune espèce opportuniste ont été identifiées, données dans le tableau 112 :

	Ceinture à Pelvetia canaliculata											
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3		
Espèce caractéristique												
Catenella caespitosa	<0,5		4	3								
Fucus spiralis	0,5-<30		1									
Pelvetia canaliculata	0,5-<30	4	3	4	5	4	4	2	2	3		
Verrucaria maura	<0,5							2		1		

Tabl. 112 : 2022 : Sabias – Ceinture à Pelvetia canaliculata à l'automne

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Fucus spiralis* une espèce caractéristique et une espèce opportuniste ont été identifiées, données dans le tableau 113 :

			Ceint	ure à	Fucu	s spire	alis			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Catenella caespitosa	0,5-<30				2	1				
Fucus spiralis	0,5-<30	2	4	3	3	2	3	2		2
Fucus spiralis	30-<100		1	2			2	3	4	
Hildenbrandia rubra	<0,5	1					2			
Lichina pygmaea	<0,5	1								
Pelvetia canaliculata	0,5-<30	1				1				
Espèce opportuniste										
Ulva clathrata	0,5-<30		2	4	1			1		1
Autres algues										
Rhodothamniella floridula	<0,5			2				2		2
Rivularia	0,5-<30					1	1			

Tabl. 113: 2022: Sabias - Ceinture à Fucus spiralis à l'automne

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Ascophyllum nodosum* trois espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 114 :

		Cein	ture	à <i>Asc</i> o	phyll	um n	odosi	ım		
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Ascophyllum nodosum	0,5-<30			2				2		
Fucus vesiculosus	0,5-<30	5	5	4	4	4	5	2	3	5
Fucus vesiculosus	30-<100			3				3		
Gelidium pusillum	0,5-<30		2	2	4	2		2	4	1
Mastocarpus stellatus*	0,5-<30							1		
Espèce opportuniste										
Ulva spp.	0,5-<30			1			1		1	
Ulva clathrata	<0,5		2	2	2	4			1	2
Autres algues										
Osmundea pinnatifida	0,5-<30		1	1	1		2			

Tabl. 114 : 2022 : Sabias – Ceinture à *Ascophyllum nodosum* **à l'automne** (Classes des taux de recouvrement : Rec1 : 1-5%; Rec2 : >5-25%; Rec3 : >25-50%; Rec4 : >50-75%; Rec5 : >75-100%)

Dans la ceinture à *Fucus serratus* cinq espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 115 :

	Ceinture à Fucus serratus									
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Ellisolandia elongata*	0,5-<30							1		
Fucus serratus	0,5-<30			4		2	2	3		1
Fucus serratus	30-<100	4	5	3	4	5	5	5	5	4
Gelidium spinosum*	0,5-<30					1				
Lithophyllum incrustans*	<0,5									1
Lomentaria articulata	0,5-<30				2		2			1

Mastocarpus stellatus	0,5-<30	2		1	3		2	1		1
Osmundea pinnatifida	0,5-<30	2	1	4		1	1	3		1
Rhodothamniella floridula	<0,5	2	1			3		1	4	2
Espèce opportuniste										
Ulva spp.	0,5-<30	1	1	1	2			1	1	
Ulva clathrata	0,5-<30			2						
Autres algues										
Callithamnion tetricum	0,5-<30						1			1
Chondracanthus acicularis	0,5-<30	1	2	1	2	2	2		1	
Cladostephus spongiosus	0,5-<30								1	

Tabl. 115: 2022: Sabias – Ceinture à Fucus serratus à l'automne

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Himanthalia elongata* six espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 116 :

			Cein	ture à	Him	antha	ılia			
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Bifurcaria bifurcata	0,5-<30	4	3	2	3	2	2	3		
Bifurcaria bifurcata	30-<100								2	5
Chondracanthus acicularis	0,5-<30	4	5	3	2	2	3	3	3	3
Chondrus crispus	0,5-<30	1	1	1		1	1	1	1	1
Ellisolandia elongata*	0,5-<30								1	1
Gelidium spinosum*	0,5-<30	1		1		2				
Lithophyllum incrustans*	<0,5		2							1
Lomentaria articulata*	0,5-<30				1					
Mastocarpus stellatus	0,5-<30		2	2	2	4	1	1	1	1
Osmundea pinnatifida	0,5-<30	1	1	2	4	1	2		1	
Rhodothamniella floridula	<0,5						2	4	4	2
Espèce opportuniste										
Ulva	0,5-<30	2	1	1	2	2	1	1	2	1
Autres algues										
Caulacanthus	0,5-<30				1					
Chondria coerulescens	0,5-<30								2	
Gastroclonium ovatum	0,5-<30							1		1
Hildenbrandia rubra	<0,5						1			

Tabl. 116 : 2022 : Sabias - Ceinture à *Himanthalia elongata / Bifurcaria bifurcata* à l'automne

*Espèce**: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Laminaria digitata* cinq espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 117 :

	Ceinture à <i>Laminaria</i>									
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Chondracanthus acicularis	0,5-<30	3	5	1		2	2	3	3	2
Chondrus crispus*	0,5-<30	1	1					1		
Cystoclonium purpureum*	0,5-<30									2

Ellisolandia elongata*	0,5-<30	2	1			1				
Lithophyllum incrustans	<0,5			4						
Mastocarpus stellatus	0,5-<30		3						1	1
Osmundea pinnatifida	0,5-<30	2	1				1		1	3
Palmaria palmata*	0,5-<30					1				
Plocamium cartilagineum*	0,5-<30					1				
Saccorhiza polyschides	0,5-<30		3			3		3		4
Saccorhiza polyschides	30-<100	4		2	4				3	
Espèce opportuniste										
Ulva	0,5-<30	1	2	1	1	2	2	1	1	
Autres algues										
Bifurcaria bifurcata	0,5-<30				3					
Bifurcaria bifurcata	30-<100								3	
Cladostephus spongiosus	0,5-<30	2								
Colpomenia	0,5-<30			1				1		
Dictyopteris polypodioides	0,5-<30			2	2	1	2			
Dictyota dichotoma	0,5-<30					1				
Heterosiphonia plumosa	0,5-<30		1			1				
Laminaria hyperborea	0,5-<30						3			
Phymatolithon lenormandii	<0,5				3	2	4		3	4
Rhodothamniella floridula	<0,5		·					3		
Vertebrata fucoides	0,5-<30		·		3	2				

Tabl. 117: 2022: Sabias – Ceinture à Laminaria digitata à l'automne

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

10) La Sauzaie:

Le site de la Sauzaie (Bretignolles) est le site suivi pour la masse d'eau côtière GC50 – Nord Sables d'Olonne (Fig. 18).

Fig. 18: 2022: Carte de localisation du site de la Sauzaie (Bretignolles) (source: Ifremer, Shom, IGN Projection: Lambert 2 étendue)

➤ <u>Mission de printemps</u> :

Pour le site de la Sauzaie (Fig. 19), les surfaces de chaque ceinture et les recouvrements moyens observés au printemps sont donnés dans le tableau 118.

Une ceinture à laminaires est observée mais celle-ci est très peu découverte, il n'est pas possible d'estimer le taux de recouvrement et sa superficie.

La ceinture à *Fucus serratus* est tronquée très rapidement par une zone colonisée par des hermelles et des corallines (Fig. 20).

Ceinture	Surface	Recouvrement
An	400 m^2	75%
Fser	10 m^2	20%
Не	1000 m ²	80%
Ld	? m ²	? %

Tabl. 118: 2022: La Sauzaie - Surface et Recouvrement au printemps

Fig. 19: 2022: Relevés du site de la Sauzaie au printemps

Fig. 20: 2022: Transect de la Sauzaie au printemps, zone colonisée par des hermelles et des corallines

Dans la ceinture à *Ascophyllum nodosum* deux espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 119 :

		(Ceintur	re à As	cophyl	lum no	odosun	n		
	Strate									
Espèce caractéristique	(cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ascophyllum nodosum	0,5-<30	1	2		2			2		2
Ascophyllum nodosum	30-<100	3	2	3		2		2	2	2
Ellisolandia elongata*	0,5-<30								1	2
Fucus serratus	0,5-<30									1
Fucus vesiculosus	<0,5						1			
Fucus vesiculosus	0,5-<30				2	2	1		1	
Fucus vesiculosus	30-<100					2				2
Lithophyllum incrustans*	<0,5	1		1	1		1			
Lomentaria articulata*	0,5-<30							1		1
Mastocarpus stellatus*	0,5-<30							1		2
espèce opportuniste										
Ulva	0,5-<30				2		2	1		1
Autres algues										
Osmundea pinnatifida	0,5-<30				4	3	2	2	2	2
Vertebrata fucoides	0,5-<30									2
Vertebrata thuyoides	<0,5							1		

Tabl. 119: 2022: La Sauzaie - Ceinture à Ascophyllum nodosum au printemps

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Fucus serratus* quatre espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 120 :

	Ceinture à Fucus serratus									
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Ellisolandia elongata	0,5-<30	4	2		1	2	1	4	3	2
Fucus serratus	0,5-<30	2	1							1
Fucus serratus	30-<100							2		
Mastocarpus stellatus	0,5-<30	2						2		
Osmundea pinnatifida	0,5-<30	2	2		3	2	4	3		2
espèce opportuniste										
Ceramium	0,5-<30									2
Ulva	0,5-<30	2			1	2	2	1	2	3
Autres algues										
Fucus vesiculosus	0,5-<30	2					2	1	3	
Fucus vesiculosus	30-<100							1		

Tabl. 120 : 2022 : La Sauzaie – Ceinture à $Fucus\ serratus\ au\ printemps$

Dans la ceinture à *Himanthalia elongata* trois espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 121 :

	Ceinture à Himanthalia									
Espèce caractéristique	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Chondracanthus acicularis*	0,5-<30						1			
Ellisolandia elongata	0,5-<30	4	4	3	3	1	2	2	1	3
Mastocarpus stellatus	<0,5	1	1		1		1			
Mastocarpus stellatus	0,5-<30			2				2		

Osmundea pinnatifida	0,5-<30	1		2	1	2	2	1	
espèce opportuniste									
Ulva	0,5-<30	1		1	2		1	1	
Autres algues									
Dictyota dichotoma	0,5-<30		1						

Tabl. 121: 2022: La Sauzaie – Ceinture à Himanthalia elongata / Bifurcaria bifurcata au printemps

➤ Mission d'automne :

Pour le site de la Sauzaie (Fig. 21), les surfaces de chaque ceinture et les recouvrements moyens observés à l'automne sont donnés dans le tableau 122.

Une ceinture à laminaires est observée mais celle-ci est très peu découverte, il n'est pas possible d'estimer le taux de recouvrement et sa superficie.

Comme au printemps la ceinture à *Fucus serratus* est tronquée très rapidement par une zone colonisée par des hermelles et des corallines (Fig. 22).

Ceinture	Surface	Recouvrement
An/Fves	1000 m^2	75%
Fser	10 m^2	5%
He/Bb	400 m ²	50%
Ld	? m ²	? %

Tabl. 122: 2022: La Sauzaie - Surface et Recouvrement à l'automne

Fig. 21 : 2022 : Relevés du site de la Sauzaie à l'automne

Fig. 22 : 2022 : Transect de la Sauzaie à l'automne, zone colonisée par des hermelles et des corallines

Dans la ceinture à *Ascophyllum nodosum* quatre espèces caractéristiques et une espèce opportuniste ont été identifiées, données dans le tableau 123 :

		Ceinture à Ascophyllum nodosum								
	Strate (cm)	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3
Espèce caractéristique										
Ascophyllum nodosum	0,5-<30		2		2	3	2	2		
Ascophyllum nodosum	30-<100	3	3	4				2	3	2
Cladophora rupestris*	<0,5							1		
Ellisolandia elongata	<0,5	1		2				2	1	1
Fucus vesiculosus	0,5-<30				2	3			2	2
Fucus vesiculosus	30-<100		2							
Mastocarpus stellatus*	0,5-<30				1		2			
Phymatolithon lenormandii	<0,5	3	3	2		2				
Espèce opportuniste										
Ulva	<0,5							1		
Ulva	0,5-<30		2				1	2	1	1
Autres algues										
Chondracanthus acicularis	<0,5	1	2	2	3	3	2	2	2	2
Chondracanthus acicularis	0,5-<30		1						2	
Osmundea pinnatifida	0,5-<30								1	

Tabl. 123: 2022: La Sauzaie – Ceinture à Ascophyllum nodosum à l'automne

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Fucus serratus* aucune espèce caractéristique et une seule espèce opportuniste a été identifiée, données dans le tableau 124 :

		Ceinture à Fucus serratus									
	Strate (cm)	Strate (cm) 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.									
Espèce caractéristique											
Fucus serratus*	0,5-<30	1			1	1					
Phymatolithon lenormandii*	<0,5										
Espèce opportuniste											
Ulva	0,5-<30		1	1							
Autres algues											
Chondracanthus acicularis	<0,5	1	2						1		
Vertebrata fucoides	<0,5 1 2										

Tabl. 124: 2022: La Sauzaie - Ceinture à Fucus serratus à l'automne

Espèce*: espèce dont le recouvrement atteint moins de 2,5% en moyenne dans la ceinture, non retenue comme caractéristique pour le calcul de l'indice DCE.

Dans la ceinture à *Himanthalia elongata* deux espèces caractéristiques et deux espèces opportunistes ont été identifiées, données dans le tableau 125 :

		Ceinture à <i>Himanthalia</i>										
	Strate (cm)	Strate (cm) 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3										
Espèce caractéristique												
Chondracanthus acicularis	0,5-<30 3 1											
Ellisolandia elongata	<0,5 4 4 2 4 3 3 1											
Mastocarpus stellatus*	0,5-<30						2					
Osmundea pinnatifida*	0,5-<30 1 1 1 1 1 1											

Espèce opportuniste									
Ceramium	0,5-<30	2			2		1		
Ulva	0,5-<30	2	2	2	1	1			
Autres algues									
Chondria coerulescens	0,5-<30		2	3					
Codium	0,5-<30						1		
Gigartina pistillata	0,5-<30			1					
Hypoglossum hypoglossoides	0,5-<30	2	1		1				
Vertebrata fucoides	0,5-<30	1							

Tabl. 125 : 2022 : La Sauzaie - Ceinture à Himanthalia elongata à l'automne

11) Grouin NE:

▶ <u>Présentation du site</u>: Dans le district Loire-Bretagne, la masse d'eau côtière la plus méridionale en contrôle de surveillance DCE est la masse d'eau côtière « Pertuis Breton - FRGC53 ». Elle est située au Nord de l'île de Ré, bordée par l'anse de l'Aiguillon et les côtes de Vendée (Fig. 23) et reçoit les eaux des estuaires du Lay et Sèvre Niortaise. La station Grouin NE Loix située au nord de l'île de Ré (Fig. 24) a été retenue pour le contrôle de surveillance DCE 2022.

Le site du Grouin NE Loix (île de Ré) IR est situé sur une banche calcaire du Jurassique sur la côte Nord de l'île de Ré. Le supralittoral est constitué d'un terreplein herbu avec une pente de galets mobiles, le dénivelé est supérieur à 2 m. Le médiolittoral est constitué d'une succession de platins rocheux jurassiques horizontaux avec flaques et ruptures de pente plus ou moins colonisée par des huîtres *Magallana* (= *Crassostrea*) gigas dans le médiolittoral moyen et inférieur (Fig. 23).

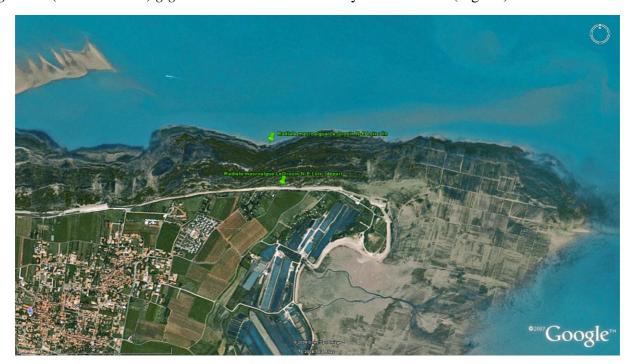


Fig. 23: 2022: Localisation du site de Grouin NE Loix (Ile de Ré) IR au Nord de l'île de Ré à marée basse

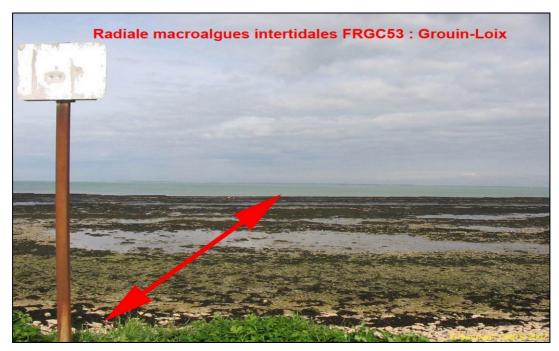


Fig. 24 : Station du Grouin NE Loix (île de Ré) IR, vue Nord à marée basse en 2007 (Source Sauriau P.-G.)

Sur le site du Grouin NE Loix, on distingue 5 ceintures algales, puisque la première ceinture algale à *Pelvetia canaliculata* n'est pas présente :

- Fucus spiralis (Fspi),
- Ascophyllum nodosum (An) / Fucus vesiculosus (Fves),
- Fucus serratus (Fser) / Rhodophyceae,
- *Himanthalia elongata* (He) / *Bifurcaria bifurcata* (Bb) / Rhodophyceae en particulier non repérable en 2007 mais échantillonnée depuis 2013,
- Laminaria digitata (Ld).

Ces 5 ceintures algales se distribuent sur un dénivelé d'environ 3 m (Fig. 25, 26) et leurs principales caractéristiques sont rappelées en Tabl. 126.

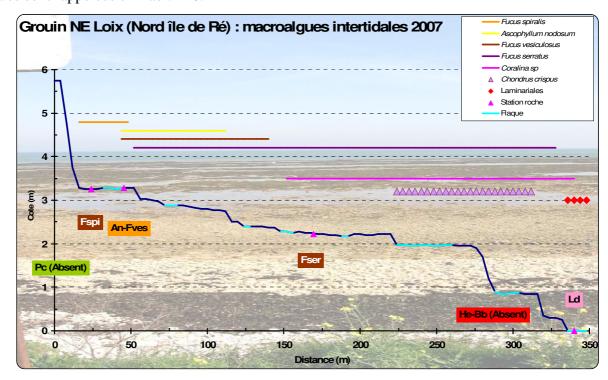


Fig. 25: Profil du site du Grouin NE Loix (île de Ré) IR avec extension des ceintures algales

Fig. 26 : Grouin NE Loix (île de Ré) IR : Transect 2022 de printemps pour le relevé des limites de ceintures (Source Google Earth, cliché 18-8-2018)

Point	Ceinture	Commentaire
Pc	CORS SAURIAU P. G. 16 DU 2010	 Médiolittoral supérieur : Galets de calcaire roulés en bordure d'estran Laisses de mer de Fucales Dénivelé de 2 m Ceinture à Pelvetia canaliculata Cliché : P-G Sauriau 15/06/2010
Fspi	o CNRS SAURIAU P. G. 15-06-2010	 Médiolittoral moyen : Première pente douce avec galets et Fucus spiralis Dénivelé 20- 50 cm Ceinture à Fucus spiralis Cliché : P-G Sauriau 15/06/2010

Point	Ceinture	Commentaire
An Fves	© CNRS SAURIAG P. G. 15-06-2010	Médiolittoral moyen : - Banche en pente douce - Rupture en marche d'escalier de 30 à 40 cm - Front de banche colonisée par fucales avec flaque en arrière et cailloutis en avant Ceinture à Ascophyllum nodosum et Fucus vesiculosus Cliché : P-G Sauriau 15/06/2010
Fser / Rhodophycae	© CNRS SAURIAU P. G. 15-06-2010	 Médiolittoral inférieur : Banche horizontale Rupture en marche d'escalier de 40 à 50 cm Flaque avec blocs libres en avant de la rupture de pente Ceinture à Fucus serratus et Rhodophycae Cliché : P-G Sauriau 15/06/2010
He-Bb / Rhodophycae	70 705	Médiolittoral inférieur : - Banche horizontale à Fucus serratus s'arrête brusquement par une nouvelle rupture de pente de 0,50 à 1 m. Ceinture à Himanthalia elongata / Bifurcaria bifurcata / Rhodophycae Cliché : P-G Sauriau 25/06/2013

Point	Ceinture	Commentaire
Гd	© CNRS SAURIAU P. G. 15-06-2010	 Médiolittoral inférieur et début infralittoral exondable : Banche horizontale après rupture de pente abrupte de 1 m Flaque avec blocs libres en avant de la rupture de pente Pas de Laminaria spp. visible mais présence de Saccorhiza polyschides. Ceinture à Laminaria digidata / Laminariales Cliché : P-G Sauriau 15/07/2010

Tabl. 126 : Ceintures algales au site du Grouin NE Loix (île de Ré)

Le site du Grouin NE Loix (île de Ré) IR a été sélectionné :

- suite aux prospections de 2006 (Sauriau & Bréret, 2009) ; puis retenu en 2007 (Sauriau & Bréret, 2009) et enfin suivi dans le cadre du contrôle de surveillance DCE en :
- 2010 (Sauriau & Bréret, 2011),
- 2013 (Sauriau & Bréret, 2014),
- 2016 (Sauriau et al., 2017),
- 2017 (Sauriau et al., 2018),
 - 2019 (Sauriau et al., 2020) dans le cadre de la DCSMM (Tabl. 127). Depuis 2017, un suivi saisonnier a été adopté, au printemps et à l'automne.

Station	Grouin NE Loix (île de Ré) IR dans le Pertuis Breton, Mnémonique 076-P-059					
Regroupement	Non					
Moyens à la mer	Accès pédestre à deux personnes minimum sur deux jours minimum					
Multiples : surface de chaque ceinture algale pour une bande de 10 large, couverture algale moyenne toutes algues confondues dans cl ceinture, en chaque ceinture algale et pour 3 points présence en 3 de 0,1 m² des espèces caractéristiques de la ceinture et leur recouver présence des espèces opportunistes et leur recouvrement et présence autres espèces et leur recouvrement						
Fréquence	Juin, tous les 3 ans du plan de gestion puis 2 saisons printemps et automne depuis 2017					
Opérateur prélèvement	2022 : OBIOS (Objectifs Biodiversités) 2007-2019 : LIENSs (CNRS, Université de La Rochelle), antérieurement CRELA (CNRS, Université de La Rochelle, Ifremer) et CREMA L'Houmeau (CNRS-Ifremer)					
Début prélèvements	2007 (prospection et surveillance) 2017 (prospection et surveillance DCSMM)					

Tabl. 127 : Station Grouin NE Loix (Ile de Ré) IR

> Résultats :

Les relevés effectués sur le site Grouin NE aux deux saisons (printemps et automne) ont été réalisés selon le protocole DCE (Ar Gall & Le Duff 2007), adapté aux côtes charentaises (Annexe 2).

Fig. 27 : Grouin NE Loix (île de Ré) IR : Profil du site avec position des points au printemps 2022 pour chaque ceinture algale

(Source Google Earth, cliché 18-8-2018)

1) Surface et couverture végétale globale des ceintures :

La ceinture à *Pelvetia canaliculata* (Pc) est absente du site Grouin NE Loix (île de Ré) IR (Tabl. 128). Alors que la ceinture à *Himanthalia elongata* (He) / *Bifurcaria bifurcata* (Bb) / Rhodophycea n'avait pas pu être clairement individualisée en 2007 et 2010, un fort développement des algues rouges en 2013 a permis de positionner les quadrats et de faire un suivi sur cette ceinture.

Ceinture algale	Saison	Surface pour 100 m linéaire (m²)	Recouvrement Végétal (%)	Rang
Pelvetia canaliculata (Pc)	P	0	0	-
Fucus spiralis (Fspi)	P	500	2,5-5	5
Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)	P	12000	5-10	2
Fucus serratus (Fser) / Rhodophyceae	P	13800	75-100	1
Himanthalia elongata (He) / Bifurcaria bifurcata (Bb) / Rhodophyceae	Р	700	50-70	4
Laminaria digitata (Ld)	P	2500	75-100	3
Pelvetia canaliculata (Pc)	A	0	0	-
Fucus spiralis (Fspi)	A	1100	0-2,5	4
Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)	A	6900	25-50	2
Fucus serratus (Fser) / Rhodophyceae	A	10700	50-75	1
Himanthalia elongata (He) / Bifurcaria bifurcata (Bb) / Rhodophyceae	A	2000	50-75	3
Laminaria digitata (Ld)	A	700	75-100	5

Tabl. 128 : Grouin NE - Surface et couverture végétale globale des ceintures algales aux deux saisons (printemps (P) et automne (A))

La topographie particulière du site avec la présence de marches en escalier dans le médiolittoral inférieur n'avait pas permis en 2007 et 2010 de séparer la fin de la ceinture à *Fucus serratus* et le début de la ceinture à laminaires avec la présence des espèces caractéristiques de la ceinture à *Himanthalia elongata* (He) / *Bifurcaria bifurcata* (Bb) / Rhodophycea. Un retour à une situation similaire est noté en 2019 avec une ceinture à *Fucus serratus* très étendue au détriment à la fois de la ceinture d'algues rouges très peu large et de la ceinture à *Ascophyllum nodosum* / *Fucus vesiculosus*. En 2022, la présence d'*Undaria pinnatifida* a permis de mieux distinguer la ceinture à laminaires. Trois ceintures sur cinq présentent une végétation dense avec 50-75% ou 75-100 % de recouvrement végétal aux deux saisons (Tabl. 128).

2) Couverture végétale des espèces caractéristiques et opportunistes :

1- Ceinture à Pelvetia canaliculata (Pc)

Cette ceinture est absente (Tabl. 129).

Espèces	Printemps (P)	Automne (A)
- Espèces caractéristiques	0 (ceinture absente)	
- Espèces ou groupe d'espèces	0 % (ceinture absente)	0 % (ceinture absente)
opportunistes		
- Autres espèces	0 (ceinture absente)	0 (ceinture absente)

Tabl. 129 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Pc aux deux saisons

LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR	Ţ										П		Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_	P .T										П		0	Réel in situ
CEINTURE	Pc	J										П			
Som:ne de % média:1			QUADRAT II									H	Н		
Type_Espèce 🔼	Ge:re_espèce	-1	1_1	1_2	1_3	2_1	2_2	2_3	3_1	3_2	3_3			Moyenne	Nb ou %
														0.00	0
LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR	Ţ,											Т	Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022	A JT										П		0	Réel in situ
CEINTURE	Pc	Ψ,										П			
Somme de % médian			QUADRAT T									Н	+		
Type_Espèce 🔻	Genre_espèce	₽ Î	1_1		1_3	2_1	2_2	2_3	3_1	3_2	3_3	П		Moyenne	Nb ou %
														0.00	0

2- Ceinture à Fucus spiralis (Fspi)

Le bilan est le suivant (Tabl. 130).

Espèces	Printemps (P)	Automne				
- Espèces caractéristiques	1 dont 1 >= 2,5 %	1 dont aucune >=2,5 %				
- Espèces ou groupe d'espèces opportunistes	3 %	1 %				
- Autres espèces	$7 \text{ dont } 2 \ge 2.5 \%$	6 dont 2 >=2,5 %				

Tabl. 130 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fspi aux deux saisons

LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR	T.										Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_P	Ψ,										9	Réel in situ
CEINTURE	Fspi	Ψ,											
Somme de % médian			QUADRAT T										
Type_Espèce -T	Genre_espèce	# Î	1_1	1_2	1_3	2_1	2_2	2_3	3_1	3_2	3_3	Moyenne	Nb ou %
□ caractéristiques	Fucus spiralis		0	15	15	2.5	38	2.5	2.5	2.5	15	10.28	1
∃opportunistes	Ulva compressa		0	2.5	2.5	0	0	0	0	0	0	0.56	3.06
	Ulva rigida		2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.50	
autres	Caulacanthus okamurae		0	2.5	0	0	2.5	0	0	0	2.5	0.83	7
	Chondracanthus acicularis		0	0	0	0	0	0	0	2.5	2.5	0.56	dont $2 \ge 2.5\%$
	Cladophora albida		0	0	0	0	2.5	0	0	0	0	0.28	
	Gelidium pusillum		2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	15	3.89	
	Porphyra linearis		0	0	0	0	0	2.5	2.5	0	0	0.56	
	Ralfsia verrucosa		2.5	0	0	2.5	2.5	2.5	2.5	0	15	3.06	
	Verrucaria maura		0	2.5	2.5	0	0	0	0	2.5	0	0.83	

LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR	"T											П	Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_A	Ψ,											П	9	Réel in situ
CEINTURE	Fspi	Ψ,													
Somme de % médian			QUADRAT T									+	H		
											_	-	-		
Type_Espèce 🍱	Genre_espèce	ΨÎ	1_1	1_2	1_3	2_1	2_2	2_3	3_1	3_2	3_3		Ш	Moyenne	Nb ou %
□caractéristiques	Fucus spiralis		0	2.5	2.5	0	0	0	2.5	0	2.5			1.11	0
□opportunistes	Ulva clathrata		0	2.5	0	0	0	0	0	()	2.5			0.56	0.56
autres	Caulacanthus okamurae		2.5	2.5	0	0	0	0	0	0	0			0.56	6
	Cladophora albida		0	0	0	0	0	0	0	0	2.5			0.28	dont 2 >= 2,5%
	Gelidium pusillum		2.5	15	2.5	2.5	0	0	2.5	2.5	2.5			3.33	
	Osmundea hybrida		0	0	0	0	0	0	0	0	2.5			0.28	
	Ralfsia verrucosa		0	0	0	0	0	0	0	2.5	0			0.28	
	Verrucaria maura		5	15	0	15	15	15	15	0	0			8.89	

3- Ceinture à Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)

Le bilan est le suivant (Tabl. 131).

Espèces	Printemps (P)	Automne (A)
- Espèces caractéristiques	7 dont 5 >= 2,5 %	6 dont 5 >=2,5 %
- Espèces ou groupe d'espèces opportunistes	2 %	11 %
- Autres espèces	4 dont 1 >= 2,5 %	8 dont aucune >= 2,5 %

Tabl. 131 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture An-Fves aux deux saisons

LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR										Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_P										9	Réel in situ
CEINTURE	An / Fves											
Somme de % médian		QUADRAT T										
Type_Espèce	Genre_espèce	1_1			_	_		_	3_2	3_3	Moyenne	Nb ou %
∃ caractéristiques	Ascophyllum nodosum	2.5	15	0	()	88	3	3	30	38	19.72	5
	Fucus vesiculosus	0	15	63	78	38	63	3	0	15	30.28	
	Gelidium crinale	0	0	0	3	0	3	0	0	0	0.56	
	Gelidium pusillum	2.5	3	0	0	0	0	3	2.5	2.5	1.39	
	Osmundea pinnatifida	0	()	3	3	3	3	15	15	2.5	4.72	
	Phymatolithon lenormandii	2.5	3	15	15	15	15	3	38	38	15.83	
	Ralfsia verrucosa	2.5	3	15	15	15	15	3	2.5	2.5	8.06	
□opportunistes	Ceramium diaphanum	0	0	0	0	0	0	0	2.5	0	0.28	2.22
	Ceramium virgatum	0	0	0	()	3	0	0	0	0	0.28	
	Ulva rigida	2.5	3	3	0	3	3	0	0	0	1.39	
	Vertebrata reptabunda	0	0	0	0	0	0	0	0	2.5	0.28	
autres =	Caulacanthus okamurae	0	0	15	0	0	15	3	0	0	3.61	4
	Chondracanthus acicularis	2.5	3	3	3	3	3	3	0	0	1.94	dont $1 \ge 2.5\%$
	Cladophora albida	2.5	0	0	0	0	0	0	0	0	0.28	
	Jania squamata	0	()	0	3	3	()	()	2.5	0	0.83	
LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR										Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_A										9	Réel in situ
CEINTURE	An / Fves											
CEINTUKE	An / Fves											
Somme de % médian	7 HITT VCS	QUADRAT										
Somme de % médian Type_Espèce	Genre_espèce I	1_1	1_2		_			_	3_2	3_3	Moyenne	Nb ou %
Somme de % médian	Genre_espèce Ascophyllum nodosum	1_1 0	1_2	15	15	53	15	0	0	0	10.83	Nb ou %
Somme de % médian Type_Espèce	Genre_espèce I	1_1 0 15	1_2 0 15	15 3	15	53	15 0	0 15	0 63	0 63	10.83 19.44	
Somme de % médian Type_Espèce	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum	1_1 0 15 0	1_2 0 15 3	15 3 3	15 0 3	53 3 15	15 0 3	0 15 3	0 63 0	0 63 0	10.83 19.44 3.06	
Somme de % médian Type_Espèce	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida	1_1 0 15 0 2.5	1_2 0 15 3 0	15 3 3 3	15 0 3 0	53 3 15 3	15 0 3 3	0 15 3 0	0 63 0 2.5	0 63 0	10.83 19.44 3.06 1.39	
Somme de % médian Type_Espèce	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii	1_1 0 15 0 2.5	1_2 0 15 3 0	15 3 3 3 3	15 0 3 0 3	53 3 15 3 15	15 0 3 3 15	0 15 3 0	0 63 0 2.5 0	0 63 0 0 2.5	10.83 19.44 3.06 1.39 4.17	
Somme de % médian Type_Espèce ☐ caractéristiques	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa	1_1 0 15 0 2.5 0 2.5	1_2 0 15 3 0 0 3	15 3 3 3 3 0	15 0 3 0 3 3	53 3 15 3 15 3	15 0 3 3 15 3	0 15 3 0 0 15	0 63 0 2.5 0 15	0 63 0 0 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00	5
Somme de % médian Type_Espèce	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata	1_1 0 15 0 2.5 0 2.5 0	1_2 0 15 3 0 0 3	15 3 3 3 3 0 0	15 0 3 0 3 3 3	53 3 15 3 15 3 3	15 0 3 3 15 3	0 15 3 0 0 15	0 63 0 2.5 0 15	0 63 0 0 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00	
Somme de % médian Type_Espèce ☐ caractéristiques	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum	1_1 0 15 0 2.5 0 2.5 0 2.5	1_2 0 15 3 0 0 3 0	15 3 3 3 3 0 0	15 0 3 0 3 3 3 3	53 3 15 3 15 3 3 3	15 0 3 3 15 3 3	0 15 3 0 0 15 0 3	0 63 0 2.5 0 15 0 2.5	0 63 0 0 2.5 2.5 0 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67	5
Somme de % médian Type_Espèce ☐ caractéristiques	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa	1_1 0 15 0 2.5 0 2.5 0 0 0 0	1_2 0 15 3 0 0 3 0 0	15 3 3 3 3 0 0 0	15 0 3 0 3 3 3 3 0	53 3 15 3 15 3 3 3	15 0 3 3 15 3 3 3 0	0 15 3 0 0 15 0 3 3	0 63 0 2.5 0 15 0 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83	5
Somme de % médian Type_Espèce ☐ caractéristiques	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida	1_1 0 15 0 2.5 0 2.5 0 0 0 0 0	1_2 0 15 3 0 0 3 0 0 0 3	15 3 3 3 0 0 0 0	15 0 3 0 3 3 3 3 0 0	53 3 15 3 15 3 3 3 0	15 0 3 15 3 3 3 0 0	0 15 3 0 0 15 0 3 3 3	0 63 0 2.5 0 15 0 2.5 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39	5
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda	1_1 0 15 0 2.5 0 2.5 0 0 0 0 2.5 2.5	1_2 0 15 3 0 0 3 0 0 0 3 3	15 3 3 3 0 0 0 0 0	15 0 3 0 3 3 3 3 0 0 0	53 3 15 3 15 3 3 0 0	15 0 3 3 15 3 3 0 0	0 15 3 0 0 15 0 3 3 3	0 63 0 2.5 0 15 0 2.5 2.5 2.5 15	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 15	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83	10.56
Somme de % médian Type_Espèce ☐ caractéristiques	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae	1_1 0 15 0 2.5 0 2.5 0 0 0 0 2.5 2.5	1_2 0 15 3 0 0 3 0 0 0 3 3 0	15 3 3 3 0 0 0 0 0 0 15	15 0 3 0 3 3 3 3 0 0 0 0	53 3 15 3 15 3 3 0 0 0	15 0 3 15 3 3 0 0 0	0 15 3 0 0 15 0 3 3 3 3	0 63 0 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 15 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67	10.56
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae Chaetomorpha aerea	1_1 0 15 0 2.5 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5	1_2 0 15 3 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0	15 3 3 3 0 0 0 0 0 15 0	15 0 3 0 3 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3	53 3 15 3 15 3 3 0 0 0 0	15 0 3 3 15 3 3 0 0 0	0 15 3 0 0 15 0 3 3 3 3 3	0 63 0 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 2.5 15 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67 0.28	10.56
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae Chaetomorpha aerea Cladophora albida	1_1 0 15 0 2.5 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1_2 0 15 3 0 0 0 3 0 0 0 3 3 0 0 0 0 0 0 0 0 0	15 3 3 3 0 0 0 0 0 0 0 0 0	15 0 3 0 3 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3	53 3 15 3 15 3 3 0 0 0 0	15 0 3 3 15 3 3 0 0 0 0	0 15 3 0 0 15 0 3 3 3 3 3 0 0	0 63 0 2.5 0 15 0 2.5 2.5 2.5 15 2.5 0	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 2.5 2.5 0 2.5 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67 0.28 0.28	10.56
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae Chaetomorpha aerea	1_1 0 15 0 2.5 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1_2 0 15 3 0 0 0 3 0 0 0 3 3 0 0 0 0 0 0 0 0 0	15 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 3 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3	53 3 15 3 15 3 3 3 0 0 0 0 0 3	15 0 3 3 15 3 3 0 0 0 0 3	0 15 3 0 0 15 0 3 3 3 3 3 0 0 0	0 63 0 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 2.5 15 2.5 0 0 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67 0.28 0.28	10.56
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae Chaetomorpha aerea Cladophora albida Cladophora hutchinsiae Gracilaria gracilis	1_1 0 15 0 2.5 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	1_2 0 15 3 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0	15 3 3 3 3 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3	53 3 15 3 15 3 3 3 0 0 0 0 3 0 0	15 0 3 3 15 3 3 0 0 0 0 3 0 0	0 15 3 0 0 15 0 3 3 3 3 3 0 0	0 63 0 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 2.5 0 0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67 0.28 0.28	10.56
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae Chaetomorpha aerea Cladophora albida Cladophora hutchinsiae	1_1 0 15 0 2.5 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	1_2 0 15 3 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0	15 3 3 3 3 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3	53 3 15 3 15 3 3 0 0 0 0 3 0 0	15 0 3 3 15 3 3 0 0 0 0 3 0 0	0 15 3 0 0 15 0 3 3 3 3 0 0 0 3 3 3 3 0 0 0 0 0 0 0	0 63 0 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5 0 0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 15 2.5 0 0 2.5 2.5 2.5 0 0 2.5 2.5 2.5 0 0 2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67 0.28 0.28	10.56
Somme de % médian Type_Espèce □ caractéristiques □ opportunistes	Genre_espèce vl Ascophyllum nodosum Fucus vesiculosus Gelidium pusillum Osmundea pinnatifida Phymatolithon lenormandii Ralfsia verrucosa Carradoriella denudata Centroceras clavulatum Ulva compressa Ulva rigida Vertebrata reptabunda Caulacanthus okamurae Chaetomorpha aerea Cladophora albida Cladophora hutchinsiae Gracilaria gracilis	1_1 0 15 0 2.5 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	1_2 0 15 3 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0	15 3 3 3 3 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3	53 3 15 3 15 3 3 3 0 0 0 0 3 0 0	15 0 3 3 15 3 3 0 0 0 0 3 0 0	0 15 3 0 0 15 0 3 3 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3 3	0 63 0 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0 2.5 2.5	0 63 0 0 2.5 2.5 0 2.5 2.5 2.5 2.5 0 0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	10.83 19.44 3.06 1.39 4.17 5.00 0.83 1.67 0.83 1.39 5.83 1.67 0.28 0.28 1.67 1.39	10.56

4- Ceinture à Fucus serratus (Fser) / Rhodophyceae

Le bilan est le suivant (Tabl. 132).

Espèces	Printemps (P)	Automne (A)
- Espèces caractéristiques	$10 \text{ dont } 5 \ge 2.5 \%$	8 dont 5 >=2,5 %
- Espèces ou groupe d'espèces opportunistes	3 %	16 %
- Autres espèces	10 dont aucune >= 2,5 %	17 dont 1 >= 2,5 %

Tabl. 132 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture Fser aux deux saisons

PASSAGE_Q2 CEINTURE Somme de % médian Type_Espèce Caractéristiques	Grouin NE Loix (Ile de Ré) IR_2022_P Fser Genre_espèce Chondrus crispus Ellisolandia elongata Fucus serratus	QUADRAT 1_1 0 15 90		1_3	2_1			3_1	3_2	3 3	Moyenne	Réel in situ
Somme de % médian Type_Espèce	Genre_espèce v Chondrus crispus Ellisolandia elongata Fucus serratus	1_1 0 15	1_2 0					3_1	3_2	3 3	Moyanna	
Type_Espèce ✓	Chondrus crispus Ellisolandia elongata Fucus serratus	1_1 0 15	1_2 0					3_1	3_2	3 3	Moveme	
Type_Espèce ✓	Chondrus crispus Ellisolandia elongata Fucus serratus	1_1 0 15	1_2 0					3_1	3_2	3 3	Movenne	
	Chondrus crispus Ellisolandia elongata Fucus serratus	0 15	0					J_1	2_4			Nb ou %
	Ellisolandia elongata Fucus serratus	15			3	0	0	0	0	2.5	0.56	5
		0.0		0	0	0	3	63	63	15	19.17	
	C !! !! !! !!	90	63	0	90	90	90	53	0	88	62.50	
	Gelidium pulchellum	2.5	0	0	0	0	0	0	0	0	0.28	
	Gelidium spinosum	2.5	0	0	3	2.5	15	0	0	0	2.50	
	Jania squamata	0	0	0	0	0	0	()	3	0	0.28	
	Lomentaria articulata	0	3	0	0	2.5	3	3	3	0	1.39	
	Osmundea pinnatifida	2.5	3	2.5	0	2.5	0	3	0	0	1.39	
	Phymatolithon lenormandii	2.5	3	2.5	3	2.5	15	15	15	15	8.06	
	Ralfsia verrucosa	87.5	88	38	63	38	63	15	38	38	51.67	
□ opportunistes	Ceramium botryocarpum	2.5	3	2.5	0	0	0	0	0	0	0.83	2.78
	Ceramium gaditanum	0	0	0	0	0	0	0	3	0	0.28	
	Ulva rigida	2.5	3	2.5	0	2.5	0	0	3	2.5	1.67	
■ autres	Ahnfeltiopsis devoniensis	2.5	3	2.5	0	0	3	3	0	2.5	1.67	10
	Callithamnion tetricum	2.5	0	0	0	0	0	3	()	0	0.56	dont $0 \ge 2.5$
	Caulacanthus okamurae	0	0	2.5	0	0	0	0	()	0	0.28	
	Chondracanthus acicularis	0	0	2.5	3	2.5	0	0	()	2.5	1.11	
	Cladophora hutchinsiae	2.5	3	2.5	0	0	0	3	3	0	1.39	
	Cladostephus spongiosus	0	3	0	0	0	0	3	()	2.5	0.83	
	Gelidium crinale	0	3	2.5	3	2.5	3	0	()	2.5	1.67	
	Sphacelaria	0	0	2.5	()	0	0	3	()	0	0.56	
	Symphyocladiella parasitica	2.5	0	0	3	0	0	3	()	2.5	1.11	
	Ulothrix flacca	2.5	0	0	()	0	0	()	3	0	0.56	
TICHTIDETE	Grouin NE Loix (Ile de Ré) IR										Quadr-4	1
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR Grouin NE Loix (Ile de Ré) IR_2022_A										Quadrat 9	Réel in situ
	Ground the Book (He de Ite) Ite_2022_11										9	Reel in situ
CEINTURE	Fser											
1 6/ / 1		OUADDAT										
omme de % médian	Genre espèce	QUADRAT		1 2	2 1	2.2	2 2	2 1	2 2	2 2	M	NIL 07
Type_Espèce 🔻	Genre_espece	1_1 0	0	1_3	0	0	3	0	0	3_3	Moyenne 0.28	Nb ou %
caractéristiques	Chondrus crispus Ellisolandia elongata	2.5	3	2.5	15	38	15	0	3	0	8.61	3
	•	15	40	15	65	38	53	88	88	30	47.78	
	Fucus serratus Gelidium spinosum	0	0	0	0	0	0	0	3	2.5	0.56	
	Jania squamata	2.5	0	2.5	0	2.5	0	0	3	0	1.11	
	Osmundea pinnatifida	2.5	3	2.5	3	2.5	3	3	3	2.5	2.50	
	Phymatolithon lenormandii	2.5	3	2.5	15	2.5	0	3	15	0	4.72	
	Ralfsia verrucosa	2.5	3	2.5	63	2.5	3	63	63	2.5	22.50	
⊖opportunistes	Carradoriella denudata	0	15	15	3	2.5	3	0	0	0	4.17	15.83
Opportunistes	Centroceras clavulatum	2.5	0	2.5	0	0	3	0	3	0	1.11	13.63
	Ceramium botryocarpum	2.5	3	2.5	0	0	0	0	0	0	0.83	
	Ceramium echionotum	0	0	0	0	0	0	3	3	0	0.56	
	Ceramium virgatum	0	0	0	3	2.5	0	0	0	0	0.56	
	Diatomées coloniales	0	0	0	0	2.5	0	0	0	0	0.28	
	Monostroma grevillei	0	3	2.5	0	0	3	0	0	0	0.23	
	Ulva clathrata	2.5	0	2.5	3	2.5	0	0	0	0	1.11	
	Ulva compressa	0	3	2.5	0	2.5	3	0	0	0	1.11	
	Ulva rigida	2.5	3	2.5	3	2.5	3	3	0	2.5	2.22	
	Vertebrata fruticulosa	2.5	0	0	0	0	0	0	0	0	0.28	
	Vertebrata reptabunda	2.5	15	2.5	0	0	0	3	0	2.5	2.78	
autres	Ahnfeltiopsis devoniensis	2.5	0	0	0	0	3	0	0	2.5	0.83	17
	Caulacanthus okamurae	2.5	3	15	15	2.5	15	0	0	2.5	6.11	dont 1 >= 2,5
	Champia parvula	0	0	0	0	0	0	0	0	2.5	0.28	
	Chondracanthus acicularis	2.5	3	2.5	3	0	3	0	0	2.5	1.67	
	Cladophora hutchinsiae	2.5	3	2.5	0	2.5	0	3	0	2.5	1.67	
	Cladostephus spongiosus	2.5	3	2.5	3	2.5	3	0	0	2.5	1.94	
	Colpomenia peregrina	0	0	0	0	0	0	0	0	2.5	0.28	
		0	0	0	0	2.5	0	0	0	2.5	0.56	
	Dictyota dichotoma		0	0	0	0	0	0	0	2.5	0.28	
	Dictyota dichotoma Gaillona hookeri	0	U									
	Gaillona hookeri				()	0	0	()	3	0	0.28	
	Gaillona hookeri Gelidium crinale	0	0	0	0	2.5	0	0 15	3	2.5	0.28	
	Gaillona hookeri Gelidium crinale Gelidium pusillum	0	0	0	0	2.5	0	15	0	2.5	2.22	
	Gaillona hookeri Gelidium crinale Gelidium pusillum Gymnogongrus crenulatus	0 0 2.5	0 0	0 0	0	2.5	0	15 0	0	2.5	2.22 0.28	
	Gaillona hookeri Gelidium crinale Gelidium pusillum Gymnogongrus crenulatus Laurencia obtusa	0 0 2.5 0	0 0 0	0 0 0	0 0	2.5 0 0	0 0	15 0 0	0 0	2.5 0 2.5	2.22 0.28 0.28	
	Gaillona hookeri Gelidium crinale Gelidium pusillum Gymnogongrus crenulatus Laurencia obtusa Sargassum muticum	0 0 2.5 0 2.5	0 0 0 0	0 0 0 0	0 0 0	2.5 0 0	0 0 0 3	15 0 0 0	0 0 0	2.5 0 2.5 0	2.22 0.28 0.28 0.56	
	Gaillona hookeri Gelidium crinale Gelidium pusillum Gymnogongrus crenulatus Laurencia obtusa	0 0 2.5 0	0 0 0	0 0 0	0 0	2.5 0 0	0 0	15 0 0	0 0	2.5 0 2.5	2.22 0.28 0.28	

5- Ceinture à Himanthalia elongata (He) / Bifurcaria bifurcata (Bb) / Rhodophyceae

Le bilan est le suivant (Tabl. 133).

Espèces	Printemps (P)	Automne (A)
- Espèces caractéristiques	9 dont $5 >= 2.5 \%$	8 dont 4 >=2,5 %
- Espèces ou groupe d'espèces opportunistes	36 %	23 %
- Autres espèces	15 dont $1 \ge 2.5 \%$	21 dont 1 >= 2,5 %

Tabl. 133 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture He / Bb aux deux saisons

PASSAGE Q2	Grouin NE Loix (Ile de Ré) IR Grouin NE Loix (Ile de Ré) IR_2022_P										+++	Quadrat 9	Réel in situ
												9	Reel in situ
CEINTURE	He / Bb										+		
Somme de % médian		QUADRAT T					_			\neg			
Type_Espèce -T	Genre_espèce	1_1		1_3	2 1	2 2	2_3	3_1	3 2	3 3		Moyenne	Nb ou %
caractéristiques	Calliblepharis jubata	2.5	3	2.5	0	2.5	2.5	2.5	3	0		1.94	5
	Chondracanthus acicularis	2.5		2.5			2.5	15	3	3		3.06	
	Chondria coerulescens	0	0	0	0	0	2.5	0	0	0		0.28	
	Chondrus crispus			2.5	3	2.5		2.5	3	3		1.67	
	Cryptopleura ramosa	2.5	3	2.5	3	2.5	2.5	2.5		3		2.50	
	Ellisolandia elongata	2.5	3		3	2.5	2.5			15		3.33	
	Gelidium spinosum	15	15	15	3	15	2.5	2.5	3	3		8.06	
	Lithophyllum incrustans		3	2.5	3	2.5	2.5	2.5	3	3		2.22	
	Osmundea pinnatifida	0	3	15	0	0	0	15	63	15		12.22	
□opportunistes	Ceramium botryocarpum	0	0	0	0	0	0	2.5	3	3		0.83	36.11
	Ceramium ciliatum	15	38	15	15	38	15	15	3	15		18.61	
	Ceramium echionotum	0	0		0	0	0		3	0		0.28	
	Diatomées coloniales	0	0	0	3	2.5	0	0	0	3		0.83	
	Leptosiphonia fibrillosa		3				2.5			0		0.28	
	Ulva pseudorotundata	0	15	0	0	0	0	0	0	0		0.28	
	Ulva rigida	15 0	0	15	15	15	15	15	15	15		15.00	1.5
autres	Ahnfeltiopsis devoniensis		0							-		0.56	15
	Champia parvula Chondria dasyphylla	2.5	0		3	2.5	0		0	0	+++	0.56 0.28	dont $1 \ge 2,5$
	Colpomenia peregrina		0	2.5	3	2.5	0	2.5	0	0	+	1.11	
	Compsothamnion gracillimum	2.5	3	2.5	3	2.5	2.5	2.5	3	3	+	2.50	
	Dictyopteris polypodioides		0				2.5		0	0		0.28	
	Dictyopteris polypodioides Dictyota dichotoma		0		3		0		0	0		0.28	
	Gaillona hookeri		0				0	2.5	3	3	+	0.28	
	Gastroclonium ovatum	2.5	0	2.5	0	0	0	0	0	0		0.56	
	Gelidium crinale	0	0	0	0	0	0	0	0	3		0.28	
	Gracilaria multipartita	2.5					0		0	0		0.28	
	Heterosiphonia plumosa	2.5	0	0	0	0	0	2.5	0	0		0.56	
	Porphyra leucosticta					2.5	0	2.5	3	0		0.83	
	Ralfsia verrucosa	2.5	3						3	3		1.11	
	Rhodophyllis divaricata	2.5	0	2.5	3	0	0	2.5	0	0		1.11	
LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR											Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_A											9	Réel in situ
CEINTURE	He / Bb												
omme de % médian		QUADRAT I	-										
Type_Espèce	Genre_espèce	1_1				2_2			3_2			Moyenne	Nb ou %
caractéristiques	Chondracanthus acicularis	37.5	15	15	38	0	15	0	0	0		13.33	4
-	Chondria coerulescens	2.5	3	15	3	2.5	2.5	2.5	3	3		3.89	
-	Chondrus crispus	2.5	0	2.5	0				0	0		1.39 0.28	
	Gelidium pulchellum			2.0									
		1.5		15		15			15			16 11	
	Gelidium spinosum	15	3	15	38	15	15	15	15	15		16.11	
	Laurencia obtusa		3		38 0		15 0	15 0		15 0		0.28	
	Laurencia obtusa Lithophyllum incrustans	0 2.5	3 3	0 2.5	38 0 3	0 2.5	15 0 2.5	15 0 2.5	0	15 0 3		0.28 2.50	
Opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida	0 2.5 2.5	3 3 3 0	0 2.5 2.5	38 0 3 3	0 2.5 2.5	15 0 2.5 2.5	15 0 2.5 0	3	15 0 3 0		0.28 2.50 1.67	23.06
⊟ opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata	0 2.5 2.5 0	3 3 3 0	0 2.5 2.5 2.5	38 0 3 3 0	0 2.5 2.5 0	15 0 2.5 2.5 0	15 0 2.5 0	0 3 3 0	15 0 3 0 0		0.28 2.50 1.67 0.28	23.06
∃opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum	0 2.5 2.5 0 5	3 3 3 0 0 3	0 2.5 2.5 2.5 2.5	38 0 3 3 0 3	0 2.5 2.5 0 0	15 0 2.5 2.5 0 2.5	15 0 2.5 0 0 2.5	0 3 3 0 3	15 0 3 0		0.28 2.50 1.67 0.28 2.22	23.06
∃opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum	0 2.5 2.5 0 5	3 3 3 0 0 3 0	0 2.5 2.5 2.5 2.5 0	38 0 3 3 0 3 0	0 2.5 2.5 0 0 2.5	15 0 2.5 2.5 0 2.5 0	15 0 2.5 0 0 2.5 0	0 3 3 0 3 3	15 0 3 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56	23.06
∃opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum	0 2.5 2.5 0 5	3 3 3 0 0 3	0 2.5 2.5 2.5 2.5	38 0 3 3 0 3	0 2.5 2.5 0 0	15 0 2.5 2.5 0 2.5	15 0 2.5 0 0 2.5	0 3 3 0 3	15 0 3 0 0		0.28 2.50 1.67 0.28 2.22	23.06
∃opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum	0 2.5 2.5 0 5 0	3 3 3 0 0 3 0 15	0 2.5 2.5 2.5 2.5 0 15	38 0 3 3 0 3 0 15	0 2.5 2.5 0 0 2.5 15	15 0 2.5 2.5 0 2.5 0 2.5 0 2.5	15 0 2.5 0 0 2.5 0 15	0 3 3 0 3 3 15	15 0 3 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22	23.06
∃opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium cilatum Ceramium cilatum	0 2.5 2.5 0 5 0 15	3 3 0 0 3 0 15	0 2.5 2.5 2.5 2.5 0 15	38 0 3 3 0 3 0 15 0	0 2.5 2.5 0 0 2.5 15	15 0 2.5 2.5 0 2.5 0 2.5 2.5	15 0 2.5 0 0 2.5 0 15	0 3 3 0 3 3 15	15 0 3 0 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28	23.06
⊖opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium cimbricum Ceramium chinotum	0 2.5 2.5 0 5 0 15 0 2.5	3 3 0 0 3 0 15 0 3	0 2.5 2.5 2.5 2.5 0 15 0 2.5	38 0 3 0 3 0 15 0 3	0 2.5 2.5 0 0 2.5 15 0	15 0 2.5 2.5 0 2.5 0 2.5 2.5 0 2.5	15 0 2.5 0 0 2.5 0 15 0	0 3 3 0 3 3 15 0 3	15 0 3 0 0 0 0 0 3 0 3		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67	23.06
⊟opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium cimbricum Ceramium echionotum Ceramium cichonotum Ceramium virgatum	0 2.5 2.5 0 5 0 15 0 2.5	3 3 0 0 0 3 0 15 0 3	0 2.5 2.5 2.5 2.5 0 15 0 2.5 2.5	38 0 3 0 3 0 15 0 3 0	0 2.5 2.5 0 0 2.5 15 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 0	15 0 2.5 0 0 2.5 0 15 0 0	0 3 3 0 3 3 15 0 3	15 0 3 0 0 0 0 0 3 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28	23.06
□ opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium cimbricum Ceramium echionotum Ceramium virgatum Diatomées coloniales	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0	3 3 0 0 3 0 15 0 3 0 3 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5 2.5	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 2.5	15 0 2.5 2.5 0 2.5 0 2.5 0 2.5 0 0 0 0 0	15 0 2.5 0 0 2.5 0 15 0 0 2.5 0 0 2.5 0	0 3 3 0 3 15 0 3 0 0 3 0	15 0 3 0 0 0 0 3 0 3 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11	23.06
□ opportunistes	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium echionotum Ceramium echionotum Ceramium forgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0	3 3 0 0 3 0 15 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 3 0 0 3	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5 2.5	38 0 3 3 0 3 0 15 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0	15 0 2.5 0 0 2.5 0 15 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 3 0 0 3 0 0 0 0	15 0 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22	23.06
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium cimbricum Ceramium cimbricum Ceramium cimbricum Ceramium chionotum Ceramium sirgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0	3 3 0 0 15 0 3 0 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5 2.5 2.5	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 0 2.5 2.5 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 15 0 0 2.5 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 3 0 0 0	15 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.16 0.28	
□ opportunistes □ autres	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium cinbricum Ceramium echionotum Ceramium echionotum Ceramium gratum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0	3 3 0 0 3 0 15 0 3 0 3 0 3 0 3 0 0 3 0 0 3 0 0 0 0 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 2.5 0 2.5 2.5 2.5 0 2.5	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0	0 2.5 0 0 2.5 15 0 0 0 2.5 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 15 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 3 15 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 3 0 0 0 3 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.11 2.22 0.28 1.67	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium clitatum Ceramium clitatum Ceramium cimbricum Ceramium cimbricum Ceramium chionotum Ceramium trigatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Annfeltiopsis devoniensis	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 3 0 15 0 3 0 3 0 3 0 3 0 3 0 3 0 0 3 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 2.5 2.5 0 2.5 2.5 0 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 3 0 0 0 0 0 0	15 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 0.28 0.28 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium cinbricum Ceramium echionotum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 15 0 3 0 3 0 3 3 0 0 3 3 0 3 0 3 0 3 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 2.5 2.5 0 2.5 2.5 0 2.5 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 15 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 3 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 3.61	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium cimboryocarpum Ceramium cimbricum Ceramium cimbricum Ceramium cimbricum Ceramium cimbricum Ceramium chionotum Ceramium pricum Ceramium chionotum Ceramium chionotum Ceramium chionotum Uran irgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 15 0 3 0 3 3 0 3 3 0 3 0 3 0 3 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 2.5 2.5 0 2.5 2.5 0 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0	0 2.5 0 0 2.5 0 0 0 2.5 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 15 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 0.56 0.56 1.67	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium cliiatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium cimbricum Ceramium trigatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 3 0 15 0 3 0 3 3 0 0 3 3 0 0 3 0 3 0 0 3 0 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 0 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0	0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 15 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.11 2.22 0.28 0.28 1.57 0.56 0.56 0.56 0.56 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium cinbricum Ceramium cehionotum Ceramium gehionotum Ceramium gehionotum Uramium jatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Anfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 3 0 15 0 3 3 0 3 3 0 0 3 3 0 0 3 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 0 15 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 3 0 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 0.28 1.67 0.56 3.61 1.39 0.28 1.67	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium cinbricum Ceramium chionotum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 15 0 3 0 3 3 0 3 3 0 0 3 3 0 0 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 2.5 0 0 2.5 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 0 15 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0	0 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 15 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 3.61 1.39 0.28 1.67 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium otiliatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium ciribricum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Lyanophyceae Dictyota dichotoma	0 2.5 2.5 0 15 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 15 0 3 0 3 3 0 3 3 0 0 3 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 0 15 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.11 2.22 0.28 0.28 1.67 0.56 0.56 3.61 1.39 0.28 1.67	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium otiryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium cimbricum Ceramium irgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum	0 2.5 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 3 0 15 0 3 3 0 3 3 0 0 3 3 0 0 3 0 0 3 0 0 3 0	0 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 2.5 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.28 1.67 0.28 1.11 2.22 0.28 1.11 2.22 0.28 1.67 0.56 0.56 3.61 1.39 0.28 1.67 0.56 0.56	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium otiliatum Ceramium ciliatum Caramium ciliatum Ceramium ciliatum Uramium cehionotum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita	0 2.5 2.5 0 5 0 15 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 3 0 15 0 3 3 0 3 3 0 0 3 3 0 0 3 0 0 0 0 0 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 0 3 0 15 0 0 3 0 0 3 0 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 3.61 1.39 0.28 1.67 0.28 1.67 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium otriyocarpum Ceramium ciliatum Ceramium cimbricum Ceramium cimbricum Ceramium cimbricum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomeia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastrocionium ovatum Gracilaria multipartita Grateloupia filicina	0 2.5 2.5 0 0 15 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 3 0 15 0 3 0 3 3 0 3 3 0 0 3 3 0 0 3 0 0 0 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 0 2.5 0 0 2.5 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 0 3 3 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 0.56 0.28 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.28 1.67 0.28 0.28 0.28 1.67 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.56 0.56 0.56 0.28 0.56 0.56 0.28 0.56 0.28 0.56 0.56 0.28 0.56 0.56 0.28 0.56	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium cliiatum Ceramium cliiatum Ceramium cliiatum Ceramium cimbricum Ceramium chinotum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Alaothamion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 3 0 15 0 3 0 3 3 0 0 3 3 0 0 3 0 0 3 0 0 0 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 0 0 2.5 0 0 2.5 15 0 0 0 2.5 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.28 1.11 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.28 0.28 1.67 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium botryocarpum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium gehionotum Ceramium gehionotum Ceramium gehionotum Ceramium in tuliatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Anfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinioides Heterosiphonia plumosa	0 2.5 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 2.5 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 3 0 15 0 3 0 3 3 0 0 3 3 0 0 3 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 0 0 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 2.5 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 15 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 3.61 1.39 0.28 1.67 0.28 1.67 0.28 1.11 0.28 0.28 1.67 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium cimbricum Ceramium cimbricum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hypoglossum hypoglossoides	0 2.5 2.5 0 0 15 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 3 0 15 0 3 0 3 3 0 0 3 3 0 0 0 3 3 0 0 0 0 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 0 0 2.5 15 0 0 2.5 2.5 0 0 0 2.5 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 0 2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 15 0 0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 3.61 1.39 0.28 1.67 0.28 0.28 1.11 1.39 0.28 1.67 0.28 0.28 1.11 0.28 0.28 1.11 0.28 0.28 1.67 0.28 0.28 1.11 0.28 0.28 1.67 0.28 0.28 1.11 0.28 0.28 1.67 0.28 0.28 1.11 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.28 0.28 1.67 0.28 0.88	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium cliiatum Ceramium cliiatum Ceramium cliiatum Ceramium cliiatum Ceramium cliiatum Ceramium chionotum Ceramium sirgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hypoglossum hypoglossoides Monosporus pedicellatus	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 3 0 15 0 3 0 3 3 0 0 3 3 0 0 3 3 0 0 0 0 0 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 0 2.5 2.5 0 0 0 2.5 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.11 2.22 0.28 0.28 1.67 0.56 0.56 0.56 0.56 0.56 0.28 1.11 2.22 0.28 0.28 1.67 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.56 0.28 0.88	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium ciliatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion pracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hypoglossum hypoglossoides Monosporus pedicellatus Nitophyllum punctatum	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 15 0 3 3 0 3 3 0 0 3 3 0 0 3 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 3 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 2.5 15 0 0 0 2.5 2.5 0 0 0 2.5 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 0.56 3.61 1.39 0.28 1.67 0.28 1.67 0.28 1.67 0.28 0.56 0.28	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium otiliatum Ceramium ciliatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Aglaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hypoglossum hypoglossoides Monosporus pedicellatus Nitophyllum puncatum Ralfsia verrucosa	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 0 0 0 3 0 15 0 3 3 0 0 3 3 0 0 3 3 0 0 0 3 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 0 0 2.5 15 0 0 0 0 2.5 2.5 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.28 0.56 3.61 1.39 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.56 0.28 1.11 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.56 0.28 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.58	21
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium chionotum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Ulva rigida Aglaothamion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hyoglossum hypoglossoides Monosporus pedicellatus Nitophyllum punctatum Ralfsia verrucosa Rhodophyllis divaricata	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 0 0 15 0 3 3 0 3 3 0 0 3 3 0 0 3 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 0 2.5 15 0 0 0 0 2.5 2.5 0 0 0 0 0 2.5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 0.28 1.67 0.56 0.56 0.56 0.56 0.28 1.11 0.28 1.67 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.56 0.56 0.28 0.36	21
□ autres	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium cliiatum Ceramium cliiatum Ceramium cimbricum Ceramium echionotum Ceramium echionotum Ceramium echionotum Ceramium yirgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Alaothamnion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hypoglossum hypoglossoides Monosporus pedicellatus Nitophyllum punctatum Ralfsia verrucosa Rhodophyllis divaricata Sargassum mulicum	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 0 0 0 3 0 3 3 0 0 3 3 0 0 3 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 0 3 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 0 2.5 15 0 0 0 2.5 2.5 0 0 0 0 2.5 5 0 0 0 0 2.5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 3 0 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 3 0 0 0 3 3 0 0 0 3 3 0		0.28 2.50 1.67 0.28 2.22 0.28 1.67 0.28 1.11 2.22 0.28 1.67 0.56 0.56 3.61 1.39 0.28 1.67 0.28 1.67 0.56 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.28 0.28 0.28 1.67 0.28 0.56 0.56 0.28 0.56 0.56 0.28 0.56	
	Laurencia obtusa Lithophyllum incrustans Osmundea pinnatifida Carradoriella denudata Centroceras clavulatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium ciliatum Ceramium cimbricum Ceramium chionotum Ceramium virgatum Diatomées coloniales Gayliella flaccida Monostroma grevillei Ulva clathrata Ulva rigida Ulva rigida Aglaothamion tenuissimum Ahnfeltiopsis devoniensis Champia parvula Colpomenia peregrina Compsothamnion gracillimum Crouania attenuata Cyanophyceae Dictyota dichotoma Gastroclonium ovatum Gracilaria multipartita Grateloupia filicina Griffithsia corallinoides Heterosiphonia plumosa Hyoglossum hypoglossoides Monosporus pedicellatus Nitophyllum punctatum Ralfsia verrucosa Rhodophyllis divaricata	0 2.5 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 0 0 15 0 3 3 0 3 3 0 0 3 3 0 0 3 3 0 0 0 3 0	0 2.5 2.5 2.5 0 15 0 2.5 2.5 2.5 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 0 3 3 0 15 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2.5 2.5 0 0 0 2.5 15 0 0 0 0 2.5 2.5 0 0 0 0 0 2.5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 2.5 0 2.5 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 2.5 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 0 3 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0		0.28 2.50 1.67 0.28 2.22 0.56 12.22 0.28 1.67 0.28 1.11 2.22 0.28 0.28 1.67 0.56 0.56 0.56 0.56 0.28 1.11 0.28 1.67 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 1.67 0.28 0.28 0.56 0.56 0.28 0.36	21

6- Ceinture à Laminaria digitata (Ld) / Laminaires

Le bilan est le suivant (Tabl. 134).

Espèces	Printemps (P)	Automne (A)
- Espèces caractéristiques	11 dont 5 >= 2,5 %	15 dont 2 >=2,5 %
- Espèces ou groupe d'espèces opportunistes	11 %	14 %
- Autres espèces	14 dont aucune >= 2,5 %	$24 \text{ dont } 3 \ge 2.5 \%$

Tabl. 134 : Grouin NE - Couverture par quadrat et couverture moyenne (%) des espèces caractéristiques et opportunistes de la ceinture à Ld/laminaires aux deux saisons

PASSAGE Q2 Growin NE Loix (lie de Ré.) IR, 2022 P. M.	LIEU LIBELLE	Gr	ouin NE Loix (Ile de Ré) IR	Ţ											Quadrat	
Centrol Cent	PASSAGE Q2			Ψ.											9	Réel in situ
Somme de % médian																
Type_Espèce Genre_espèce 1,1																
Type_ Spèce Genre_espèce 1,1	Somme de % médian				OUADRAT 1	r	-	-			_					
Calliblepharis jubota			Genre espèce				1 3	2 1	2 2	2 3	3 1	3 2	3 3		Movenne	Nb ou %
Chondracamthus acciularis										_			_			5
Cryptopleura ramona	_ caracteristiques	C						_								
Dictyotal dichotoma		C.				_	_	_								<u> </u>
Elisolaminia elongata							_									
Gastroclonium ovatum							_									-
Gelidium spinosum							_	_			_					
Lithophyllum incrustans																
Dommarke pinnatifida			·				_									
Plocomium cartilagineum				_		_	_	_			-					<u>-</u>
Undaria pimatifida		7		_		_	_	_					_			<u>-</u>
Sopportunistes		r	· · · · · · · · · · · · · · · · · · ·				_				_					
Ceramium echionotum	O					_	_					-	_			10.02
Diatomées coloniales	□opportunistes						_				_					10.83
Ulva pseudorotundata	-															
Bautres				_												
Resultes						_										
Champia parvula						_	_	_	_	_	_	_	-			
Colpomenia peregrina	■ autres		1.0	_			_				_					14
Compsothamnion gracillimum			•			_	_									dont $0 >= 2,59$
Eythroglossum laciniatum			Colpomenia peregrina		0	0	0								0.28	
Gaillona hookeri		Co	mpsothamnion gracillimum		2.5	3	3		3	()	3	3	3		2.22	
Gelidium crinale		E	Erythroglossum laciniatum		0	0	0	3	0	()	0	0	0		0.28	
Gracilaria multipartita			Gaillona hookeri		2.5	3	3	0	3	()	0	0	0		1.11	
Hypoglossum hypoglossoides			Gelidium crinale		0	0	0	0	0	3	0	0	0		0.28	
Nitophyllum punctatum			Gracilaria multipartita		0	3	0	0	0	()	0	0	0		0.28	
Porphyra leucosticta		Hy	poglossum hypoglossoides		2.5	0	0	0	0	()	0	0	3		0.56	
Pterothamnion plumula			Nitophyllum punctatum		0	3	3	0	0	0	3	3	0		1.11	
Rhodophyllis divaricata			Porphyra leucosticta		0	3	0	3	0	()	0	0	0		0.56	
Rhodophyllis divaricata 2.5 3 3 3 0 3 0 3 3 0 1 1.94			Pterothamnion plumula		2.5	3	3	3	3	3	0	0	0		1.67	
Symphyocladiella parasitica 2.5 0 0 0 0 3 3 3 3 3 3			·		2.5	3	3	3	0	3	0	3	3		1.94	
LIEU Grouin J Quadrat		S				0	0	0	0	3	3	3	3		1.39	
ANNEE 2019_A																_
CEINTURE Ld Type_Espèce Genre_espèce L1 L1 L2 L3 L2 L2 L3 L3 L3 L3															Quadrat	
Somme de % médian															9	
Type_Espèce	CEINTURE		Ld	ΨT.												
Type_Espèce																
Chondracanthus acicularis 15			Character 1			1.2	1.2	0.1		2	2.2	2 :	2.2	100	1	
Chondrus crispus				71											_	3
Cryptopleura ramosa 15	= caracteristique	5														3
Ellisolandia elongata 0 0 0 2.5 2.5 0 0 0 0 0.56										_			_	_	_	
Gelidium spinosum 37.5 15 15 15 15 15 15 15																
Gracilaria bursa-pastoris 0 0 0 0 15 0 0 0 0 1.67									_					_		
Ceramium botryocarpum																
Ceramium virgatum							_						_	_		
Ulva rigida 15 2.5 15 2.5	■opportunistes															12.78
Umbraulva dangeardii										-	2.0	_		_		
Sautres Aglaothamnion tenuissimum 2.5 0 0 0 0 0 0 0 0 0																
Gastroclonium ovatum 15 0 0 0 0 2.5 0 0 0 1.94 Gracilaria multipartita 0 15 15 15 2.5 15 2.5 2.5 9.17 Melanothamnus harveyi 0 0 0 0 0 0 0 0.28 Pterosiphonia complanata 0 2.5 2.5 0 0 0 0 0 0.56 Solieria chordalis 0 0 0 0 2.5 0 0 0.56 Symphyocladiella parasitica 2.5 0 0 0 0 0 0 0 0.28	Floritano			_		_	_	_	_	_			_	_		
Gracilaria multipartita 0 15 15 15 2.5 15 2.5 2.5 9.17 Melanothamnus harveyi 0 0 0 0 0 0 0 2.5 0 0 0.28 Pterosiphonia complanata 0 2.5 2.5 0 0 0 0 0 0 0 0 0 0.56 Solieria chordalis 0 <	■autres												_	_		
Melanothamnus harveyi 0 0 0 0 0 0 0 2.5 0 0.28 Pterosiphonia complanata 0 2.5 2.5 0															*	
Pterosiphonia complanata 0 2.5 2.5 0														_		
Solieria chordalis 0 0 0 0 2.5 0 0 2.5 0.56 Symphyocladiella parasitica 2.5 0 0 0 0 0 0 0 0 0.28										-				_		
Symphyocladiella parasitica 2.5 0										_			_	_		
Undaria pinnatifida 0 0 0 0 0 0 0 0 2.5 0.28									_	_				0		
			Undaria pinnatifida		0	0	0	0	()	0	0	0	2.5	0.28	

LIEU_LIBELLE	Grouin NE Loix (Ile de Ré) IR											Quadrat	
PASSAGE_Q2	Grouin NE Loix (Ile de Ré) IR_2022_A										Ш	9	Réel in situ
CEINTURE	Ld J												
Somme de % médian		QUADRAT	įΥ										
Type_Espèce 🍱	Genre_espèce	1_1	1_2	1_3	2_1	2_2	2_3	3_1	3_2	3_3		Moyenne	Nb ou %
∃ caractéristiques	Calliblepharis jubata	0	0	0	0	0	0	0	3	0		0.28	2
	Chondracanthus acicularis	15	3	15	15	3	3	3	3	38		10.56	
	Chondria coerulescens	0	0	0	0	0	0	0	0	3		0.28	
	Chondrus crispus	0	0	0	15	0	0	0	0	0		1.67	
	Dictyopteris polypodioides	0	0	0	0	0	15	0	0	0		1.67	
	Dictyota dichotoma	2.5	0	0	0	0	0	0	0	0		0.28	
	Ellisolandia elongata	0	0	0	0	0	0	0	0	3		0.28	
	Gastroclonium ovatum	0	0	0	0	0	3	0	3	0		0.56	
	Gelidium spinosum	2.5	15	38	38	15	3	15	15	15		17.22	
	Gracilaria bursa-pastoris	2.5	3	0	3	3	3	0	0	0		1.39	
	Jania squamata	2.5	0	0	0	0	0	0	0	0		0.28	
	Laurencia obtusa	0	0	3	0	0	0	0	0	0		0.28	
	Lithophyllum incrustans	2.5	3	0	0	0	0	0	3	3		1.11	
	Osmundea pinnatifida	2.5	0	0	()	0	3	0	()	3		0.83	
	Plocamium cartilagineum	0	0	0	0	0	3	0	0	0		0.28	
∃opportunistes	Centroceras clavulatum	0	3	0	3	0	3	0	0	0		0.83	13.61
	Ceramium botryocarpum	2.5	0	0	0	0	0	0	0	0		0.28	
	Ceramium ciliatum	0	3	3	0	0	0	0	0	0		0.56	
	Ceramium echionotum	2.5	3	3	0	3	0	3	15	3		3.33	
	Ceramium secundatum	0	0	0	0	3	0	0	0	0		0.28	
	Diatomées coloniales	0	3	0	0	0	0	0	0	0		0.28	
	Gayliella flaccida	2.5	3	15	3	15	3	3	3	3		5.28	
	Monostroma grevillei	0	3	0	0	0	0	0	0	0		0.28	
	Ulva clathrata	2.5	0	0	0	0	0	0	0	0		0.28	
	Ulva fenestrata	0	0	0	0	3	3	0	0	0		0.56	
	Ulva rigida	2.5	3	0	3	0	0	3	3	3		1.67	
autres	Aglaothamnion tenuissimum	2.5	3	3	0	0	0	3	0	0		1.11	24
	Antithamnionella ternifolia	0	0	0	0	3	3	0	0	0		0.56	dont $3 \ge 2$,
	Apoglossum ruscifolium	2.5	3	0	0	3	0	0	0	3		1.11	
	Bornetia secundiflora	0	0	0	0	0	0	3	0	0		0.28	
	Champia parvula	2.5	15	3	15	15	3	15	3	3		8.06	
	Colpomenia peregrina	2.5	0	0	0	0	0	0	0	3		0.56	
	Compsothamnion gracillimum	2.5	3	0	3	0	0	3	0	0		1.11	
	Crouania attenuata	0	0	0	0	0	0	3	0	0	+	0.28	
	Cyanophyceae	2.5	0	3	0	0	0	0	0	0		0.56	
	Gracilaria multipartita	15	15	3	3	15	15	15	15	0		10.56	
	Halopithys incurva	0	0	0	0	15	15	0	0	0		3.33	
	Heterosiphonia plumosa	0	3	0	0	0	0	0	0	0		0.28	
	Hypoglossum hypoglossoides	0	3	0	0	0	0	3	0	0		0.26	
	Nitophyllum punctatum	0	3	3	3	3	0	0	3	0		1.39	
		2.5	3	3	3	3	3	0	3	0	+	1.94	
	Phymatolithon purpureum	0	0	0	0	3	3	0	0	0	+	0.56	
	Polysiphonia elongata	2.5			0	0	0	0	0	0	+		
	Pterosiphonia complanata		0	0	3						+	0.28	
	Pterothamnion plumula	0	0	3		3	3	0	0	0	+	0.83	
	Rhodophyllis divaricata	2.5		3	3	3		3	0	0	+	1.94	
	Sargassum muticum	2.5	0	3	0	3	0	3	0	3	+	1.39	
	Solieria chordalis	0	0	0	0	3	0	0	0	0	+	0.28	
	Symphyocladiella parasitica	0	0	0	0	0	3	0	0	0	+	0.28	
	Taonia atomaria	0	0	0	3	0	0	0	()	0	+	0.28	
	Xiphosiphonia pennata	2.5	3	0	3	0	0	0	0	0		0.83	

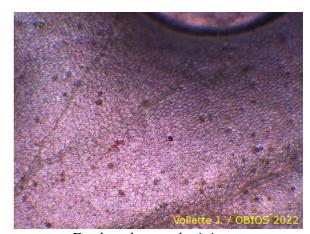
3) Espèces recensées :

Un total de 62 et 82 espèces a été observé sur le site du Grouin au printemps et en automne, respectivement. Ces totaux se décomposent selon les ceintures avec une augmentation en automne alors que le maximum d'espèces est observé pour la ceinture des algues rouges avec 39 et 38 espèces au printemps et en automne (Tabl. 135).

Ceinture	Printemps	Automne
Pelvetia canaliculata (Pc)	-	-
Fucus spiralis (Fspi)*	10	8
Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)	15	19
Fucus serratus (Fser) / Rhodophyceae	23	37
Himanthalia elongata (He) / Bifurcaria bifurcata (Bb)	31	41
Laminaria digitata (Ld)	30	50
Total	62	82

Tabl. 135 : Nombre d'espèces recensées à Grouin par ceinture algale sur roches

Il a été observé en 2022 au Grouin la présence de 18 nouvelles espèces (10 au printemps et 8 à l'automne) par rapport aux suivis antérieurs DCE sur ce site depuis 2007 (Fig. 26) :


- Centroceras clavulatum (C.Agardh) Montagne, 1846 (Fig. 28), qui pourrait avoir été confondue avec Centroceras gasparrinii (Meneghini) Kützing 1849. Observé à l'automne de la ceinture An / Fves jusqu'à la ceinture à laminaires, bien développé en touffes ou tapis dans la ceinture He / Bb. Des analyses morphologiques et génétiques complémentaires sont prévues afin de préciser l'identification de ce taxon (Sauriau, com. pers.).
- Ceramium cimbricum H.E.Petersen, 1924 (Fig. 28)
- Champia parvula (C.Agardh) Harvey, 1853
- Cladophora albida (Nees) Kutzing, 1843
- Erythroglossum laciniatum (Lightfoot) Maggs & Hommersand, 1993 (Fig. 28)
- Grateloupia filicina (J.V.Lamouroux) C.Agardh, 1822
- Griffithsia corallinoides (Linnaeus) Trevisan, 1845 (Fig. 28)
- Leptosiphonia fibrillosa (Agardh) Savoie & G.W.Saunders, 2019
- *Monosporus pedicellatus* (Smith) Solier, 1845, également observé à l'île d'Aix en 2022, lors de prospections complémentaires du suivi DCE-DCSMM (Sauriau et al., 2023 En préparation).
- Carradoriella elongata (Hudson) Savoie & G.W.Saunders, 2019 (ex. Polysiphonia elongata (Hudson) Sprengel, 1827)
- Porphyra linearis Greville, 1830
- Pterothamnion plumula (J.Ellis) Nägeli, 1855 (Fig. 28)
- Pyropia leucosticta (Thuret) Neefus & J.Brodie, 2011 (ex. Porphyra leucosticta Thuret, 1863)
- Taonia atomaria (Woodward) J.Agardh, 1848
- *Ulothrix flacca* (Dillwyn) Thuret, 1863
- Vertebrata reptabunda (Suhr) Díaz-Tapia & Maggs, 2017
- Xiphosiphonia pennata (C.Agardh) Savoie & G.W.Saunders, 2016 (ex. Pterosiphonia pennata (C.Agardh) Sauvageau, 1897)
- *Hydropunctaria maura* (Wahlenb. ex Ach.) C. Keller (Fig. 28), Gueidan & Thüs, 2009 (ex. *Verrucaria maura* Wahlenb. ex Ach., 1803), lichen encroûtant du haut de l'estran identifié comme espèce caractéristique de la ceinture à *Pelvetia canaliculata* et *Fucus spiralis* en Bretagne et Manche orientale, mais non retenu pour les Pertuis charentais (Ar Gall *et al.*, 2022).

Ces nouvelles espèces ont principalement été échantillonnées dans la partie inférieure de l'estran et dans l'infralittoral exondable. Plusieurs de ces espèces ont également été recensées sur d'autres sites suivis de la DCE-DCSMM en 2022, au Sabia sur l'île d'Oléron (P. ex. *Vertebrata reptabunda*) et à la Pointe du Parc sur l'île d'Aix (P. ex. *Monosporus pedicellatus*).

Ces nouvelles signalisations pour le Grouin ont été intégrées au référentiel Quadrige² lorsque le taxon n'était pas déjà présent comme taxon référant. Une incorporation de la liste des macroalgues Manche-Atlantique de Burel *et al.* (2019) dans le référentiel Quadrige par la cellule Quadrige a permis de simplifier ce travail d'ajouts (E. Gauthier, com. pers. 2021).

Pterothamnion plumula

Erythroglossum laciniatum

Griffithsia corallinoides

Ceramium cimbricum

Hydropunctaria maura

Fig. 28 : Vue de quelques espèces nouvellement observées au Grouin en 2022 (Cliché J. Vollette, OBIOS 2022)

Les strates de végétation sont représentées par :

- des espèces encroûtantes (E) comme les Cyanophyceae, les Diatomées coloniales, *Hildenbrandia rubra*, *Lithophyllum incrustans*, *Phymatolithon lenormandii*, *Ralfsia verrucosa* et *Hydropunctaria maura*,
- par des espèces microbiotiques (Mi) comme la plupart des espèces observées
- et par les espèces macrobiotiques (Ma) comme Ascophyllum nodosum, Fucus serratus, Sargassum muticum et Undaria pinnatifida.

Aucune espèce n'est présente dans la strate mégabiotique (Me), les *Undaria pinnatifida* observés n'atteignant pas des tailles suffisantes.

4. <u>Calcul de l'indice de qualité des MEC</u> :

1) GC08-Perros-Guirec (large):

Pour la GC08 (Perros-Guirec (large)), la notation est basée sur la station de Malban (Sept-Iles).

➤ Mission de printemps :

- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 136:

Ceinture	Recouvrement	Points
An/Fves	35%	6
Fser	60%	7
Fspi	15%	3
Не	95%	6
Ld	95%	5
Pc	25%	3
	Total	30

Tabl. 136: 2022: GC08 - CCO/Couverture algale au printemps

On obtient 30 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 137 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	5 espèces	30
An/Fves	3 espèces	10
Fser	11 espèces	30
He/Bb	10 espèces	30
Ld	11 espèces	30
	Total	130

Tabl. 137: 2022: GC08 – CCO/Espèces caractéristiques au printemps

On obtient 130 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 26 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 138 :

mere de perme est demine dums le tuereus re c		
Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	2.92%	6
An/Fves	2.78%	6
Fser	14.45%	4
He/Bb	3.33%	6
Ld	0.84%	6
	Total	28

Tabl. 138: 2022: GC08 - CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 28 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois sous-indices du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

30 + 26 + 28 = 84 points soit un EQR de 0,84

Ce résultat classe le site de Malban en « très bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 139 :

Ceinture	Recouvrement	Points
An/Fves	35%	6
Fser	60%	7
Fspi	15%	3
He	90%	6
Ld	95%	5
Pc	25%	3
	Total	30

Tabl. 139: 2022: GC08 – CCO/Couverture algale à l'automne

On obtient 30 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 140 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	4 espèces	30
An/Fves	4 espèces	10
Fser	11 espèces	30
He/Bb	8 espèces	20
Ld	8 espèces	20
	Total	110

Tabl. 140 : 2022 : GC08 - CCO/Espèces caractéristiques à l'automne

On obtient 110 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, en automne, 22 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 141 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	0.69%	6
An/Fves	9.45%	4
Fser	7.23%	4
He/Bb	3.05%	6
Ld	2.78%	6
	Total	26

Tabl. 141: 2022: GC08 - CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 26 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

30 + 22 + 26 = 78 points soit un EQR de 0,78

Ce résultat classe le site de Malban en « bon » pour cette deuxième saison d'échantillonnage.

2) GC18-Iroise (large):

Pour la GC18 (Iroise (large)), la notation est basée sur la station de Molène.

- ➤ Mission de printemps :
- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 142 :

Ceinture	Recouvrement	Points
An/Fves	50%	7
Fser	80%	8
Ld	95%	7
Не	95%	6
Fspi	75%	5
Pc	70%	4
	Total	37

Tabl. 142: 2022: GC18 – CCO/Couverture algale au printemps

On obtient 37 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 143 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	5 espèces	30
An/Fves	4 espèces	10
Fser	7 espèces	20
He/Bb	10 espèces	30
Ld	9 espèces	00
	Total	120

Tabl. 143: 2022: GC18 - CCO/Espèces caractéristiques au printemps

On obtient 120 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 24 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 144 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	0%	6
An/Fves	0.84%	6
Fser	0.84%	6
He/Bb	8.06%	4
Ld	6.11%	4
	Total	26

Tabl. 144: 2022: GC18 - CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 28 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :
- 37 + 24 + 26 = 87 points soit un EQR de 0,87. Ce résultat classe le site de Molène en « très bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 145 :

Ceinture	Recouvrement	Points
An/Fves	50%	7
Fser	85%	8
Ld	95%	7
Не	95%	6
Fspi	80%	5
Pc	80%	5
	Total	38

Tabl. 145: 2022: GC18 - CCO/Couverture algale à l'automne

On obtient 38 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 146 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	5 espèces	30
An/Fves	5 espèces	20
Fser	4 espèces	10
He/Bb	11 espèces	30
Ld	9 espèces	30
	Total	120

Tabl. 146: 2022: GC18 – CCO/Espèces caractéristiques à l'automne

On obtient 120 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, en automne, 24 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 147 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	0.56%	6
An/Fves	0.56%	6
Fser	0%	6
He/Bb	5.56%	4
Ld	4.45%	6
Total		28

Tabl. 147: 2022: GC18 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 28 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

38 + 24 + 28 = 90 points soit un EQR de 0,90

Ce résultat classe le site de Molène en « très bon » pour cette deuxième saison d'échantillonnage.

3) GC34-Lorient-Groix:

Pour la GC34 (Lorient-Groix), la notation est basée sur la station de Keragan (Fort Bloqué).

➤ <u>Mission de printemps</u> :

- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 148:

Ceinture	Recouvrement	Points
Fser	60%	7
An	10%	5
He	85%	7
Ld	85%	6
Fspi	20%	3
	Total	28

Tabl. 148: 2022: GC34 – CCO/Couverture algale au printemps

On obtient 28 points sur les 35 possibles pour les cinq ceintures échantillonnées soit un total de 32 points sur 40.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 149 :

Ceinture	Nombre d'espèces retenues	Points
Fspi	1 espèce	5
An/Fves	1 espèce	5
Fser	7 espèces	20
He/Bb	5 espèces	10
Ld	5 espèces	10
	Total	50

Tabl. 149: 2022: GC34 – CCO/Espèces caractéristiques au printemps

On obtient 50 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 10 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 150 :

Ceinture	Nombre d'espèces retenues	Points
Fspi	2.78%	6
An/Fves	0%	6
Fser	23.61%	4
He/Bb	7.78%	4
Ld	5%	4
	Total	24

Tabl. 150: 2022: GC34 - CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 24 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

32 + 10 + 24 = 66 points soit un EQR de 0,66

Ce résultat classe le site de Keragan en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 151 :

Ceinture	Recouvrement	Points
Fser	65%	7
An	20%	5
He	95%	7
Ld	85%	6
Fspi	40%	3
	Total	28

Tabl. 151: 2022: GC34 - CCO/Couverture algale à l'automne

On obtient 28 points sur les 35 possibles pour les cinq ceintures échantillonnées soit un total de 32 points sur 40 pour le premier sous-indice du CCO.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 152 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	1 espèce	5
An/Fves	0 espèce	0
Fser	6 espèces	20
He/Bb	5 espèces	10
Ld	6 espèces	10
	Total	45

Tabl. 152: 2022: GC34 – CCO/Espèces caractéristiques à l'automne

On obtient 45 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, en automne, 9 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 153 :

Ceinture	Recouvrement	Point
	opportunistes	S
Pc + Fspi	11.66%	4
An/Fves	1.4%	6
Fser	18.62%	4
He/Bb	4.72%	6
Ld	14.17%	4
	Total	24

Tabl. 153: 2022: GC34 - CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 24 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

32 + 9 + 24 = 65 points soit un EQR de 0,65

Ce résultat classe le site de Keragan en « bon » pour cette deuxième saison d'échantillonnage.

4) GC42-Belle-Ile:

Pour la GC42-Belle-Ile, la notation est basée sur la station de Belle-Ile.

Pour cette station, seule la saison de printemps a fait l'objet d'un relevé en 2022, après une prospection de terrain ayant permis de définir cette nouvelle station (Annexe 1).

- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 154:

Ceinture	Recouvrement	Points
He	100%	9
An	70%	7
Pc	60%	6
Fser	80%	6
Fspi	70%	4
_	Total	32

Tabl. 154: 2022: GC44 – CCO/Couverture algale au printemps

On obtient 32 points sur les 35 possibles pour les cinq ceintures échantillonnées soit un total de 36.57 points sur 40 pour la première métrique du CCO.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 155 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	4 espèces	30
An/Fves	3 espèces	10
Fser	6 espèces	20
He/Bb	4 espèces	10
	Total	70

Tabl. 155: 2022: GC44-CCO/Espèces caractéristiques au printemps

On obtient 70 points sur les 120 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 17.5 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 156 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	1.11%	6
An/Fves	0.28%	6
Fser	1.95%	6
He/Bb	2.51%	6
	Total	24

Tabl. 156: 2022: GC44 – CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 24 points sur les 24 possibles. En ramenant le total sur 30, on obtient 30 points.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

36.57 + 17.5 + 30 = 84.07 soit un EQR de 0,84

Ce résultat classe le site de Belle-Ile en « très bon » pour cette saison d'échantillonnage du printemps 2022.

5) GC44-Baie de Vilaine (côte):

Pour la GC44-Baie de Vilaine (côte), la notation est basée sur la station de Pénerf – Roch Viodec.

➤ <u>Mission de printemps</u> :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 157 :

Ceinture	Recouvrement	Points
An/Fves	78%	9
Fser	80%	8
He	70%	6
Fspi	90%	6
Pc	40%	3
	Total	32

Tabl. 157: 2022: GC44 – CCO/Couverture algale au printemps

On obtient 32 points sur les 35 possibles pour les cinq ceintures échantillonnées soit un total de 36.57 points sur 40 pour la première métrique du CCO.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 158 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	4 espèces	30
An/Fves	6 espèces	20
Fser	5 espèces	10
He/Bb	3 espèces	5
	Total	65

Tabl. 158: 2022: GC44-CCO/Espèces caractéristiques au printemps

On obtient 65 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 16.25 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 159 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	4.72%	6
An/Fves	5.28%	4
Fser	5.84%	4
He/Bb	1.67%	6
	Total	20

Tabl. 159: 2022: GC44 – CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 20 points sur les 24 possibles. En ramenant le total sur 30, on obtient 25 points.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

36.57 + 16.25 + 25 = 77.82 Total arrondi à 69 points soit un EQR de 0,78

Ce résultat classe le site de Pénerf en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 160 :

Ceinture	Recouvrement	Points
An/Fves	80%	9
Fser	75%	8
Не	70%	6
Fspi	50%	5
Pc	40%	3
	Total	31

Tabl. 160: 2022: GC44 – CCO/Couverture algale à l'automne

On obtient 31 points sur les 35 possibles pour les cinq ceintures échantillonnées soit un total de 35.43 points sur 40 pour la première métrique du CCO.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 161 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	5 espèces	30
An/Fves	2 espèces	5
Fser	4 espèces	10
He/Bb	2 espèces	5
	Total	50

Tabl. 161: 2022: GC44 – CCO/Espèces caractéristiques à l'automne

On obtient 50 points sur les 120 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 12.5 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 162 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	0.42%	6
An/Fves	0.56%	6
Fser	5%	4
He/Bb	8.35%	4
	Total	20

Tabl. 162: 2022: GC44 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 20 points sur les 24 possibles. En ramenant le total sur 30, on obtient 25 points.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

35.43 + 12.5 + 25 = 72.93 Total arrondi à 73 points soit un EQR de 0,73

Ce résultat classe le site de Pénerf en « bon » pour cette deuxième saison d'échantillonnage.

6) GC45-Baie de Vilaine (large) :

Pour la GC45 (Baie de Vilaine (large)), la notation est basée sur la station du Croisic – St Goustan.

- ➤ Mission de printemps :
- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 163:

Ceinture	Recouvrement	Points
An/Fves	15%	5
Fser	75%	8
Fspi	80%	7
Не	80%	6
Ld	75%	5
Pc	55%	4
	Total	35

Tabl. 163: 2022: GC45 - CCO/Couverture algale au printemps

On obtient 35 points sur les 40 possibles pour les six ceintures échantillonnées.

-Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 164 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	5 espèces	30
An/Fves	1 espèce	5
Fser	6 espèces	20
He/Bb	4 espèces	10
Ld	3 espèces	5
	Total	70

Tabl. 164: 2022: GC45 - CCO/Espèces caractéristiques au printemps

On obtient 70 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 14 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 165 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	5%	4
An/Fves	5%	4
Fser	17.5%	4
He/Bb	16.11%	4
Ld	14.44%	4
	Total	20

Tabl. 165: 2022: GC45 - CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 20 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

35 + 14 + 20 = 69 points soit un EQR de 0.69

Ce résultat classe le site du Croisic en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 166 :

Ceinture	Recouvrement	Points
An/Fves	15%	5
Fser	80%	8
Fspi	75%	7
He	80%	6
Ld	75%	5
Pc	35%	3
	Total	34

Tabl. 166: 2022: GC45 - CCO/Couverture algale à l'automne

On obtient 34 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 167 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	4 espèces	30
An/Fves	0 espèce	0
Fser	3 espèces	5
He/Bb	3 espèces	5
Ld	2 espèces	5
	Total	45

Tabl. 167: 2022: GC45 – CCO/Espèces caractéristiques à l'automne

On obtient 45 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, à l'automne, 9 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 168 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	0.42%	6
An	1.39%	6
Fser	13.62%	4
He/Bb	13.89%	4
Ld	6.68%	4
	Total	24

Tabl. 168: 2022: GC45 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 24 points sur les 30 possibles, soit 24 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

34 + 9 + 24 = 67 points soit un EQR de 0,67

Ce résultat classe le site du Croisic en « bon » pour cette deuxième saison d'échantillonnage.

7) GC46-Loire (large) – 1^{er} site:

Pour la GC46 (Loire (large)), la notation est basée sur une 1ère station, la Pointe St Gildas.

➤ <u>Mission de printemps</u> :

- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 169:

Ceinture	Recouvrement	Points
Pc	10%	3
Fspi	80%	6
An/Fves	100%	9
Fser	90%	7
He / Bb	100%	8
Ld	-	-
	Total	33

Tabl. 169: 2022: GC46/1 – CCO/Couverture algale au printemps

On obtient 33 points sur les 35 possibles pour les cinq ceintures échantillonnées. En ramenant cette note sur un total de 40 points on obtient donc, au printemps, 37,71 points sur les 30 possibles pour la deuxième métrique du CCO.

-Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 170 :

Ceinture	Nombre d'espèces retenues	Points
Pc + Fspi	4 espèces	30
An/Fves	3 espèces	10
Fser	2 espèces	5
He/Bb	5 espèces	10
	Total	55

Tabl. 170: 2022: GC46/2 - CCO/Espèces caractéristiques au printemps

On obtient 55 points sur les 120 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 13,75 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 171 :

Ceinture	Recouvrement opportunistes	Points
Pc + Fspi	2.5%	6
An/Fves	2%	6
Fser	4.3%	6
He/Bb	15.3%	4
	Total	2.2

Tabl. 171: 2022: GC46/1 - CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 22 points sur les 24 possibles, soit 27,5 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

37,71 + 13,75 + 27,5 = 78,96 points soit un EQR de 0,79

Ce résultat classe le site de la Pointe St Gildas en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 172 :

Ceinture	Recouvrement	Points
Pc	10%	3
Fspi	50%	4
An/Fves	75%	9
Fser	90%	7
He/Bb	100%	8
Ld	100%	6
	Total	37

Tabl. 172: 2022: GC46/1 - CCO/Couverture algale à l'automne

On obtient 37 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 173 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	4 espèces	30
An/Fves	4 espèces	10
Fser	3 espèces	5
He/Bb	6 espèces	10
Ld	7 espèces	20
	Total	75

Tabl. 173 : 2022 : GC46/1 – CCO/Espèces caractéristiques à l'automne

On obtient 75 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, à l'automne, 15 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 174 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	0%	6
An/Fves	6%	4
Fser	60%	1
He/Bb	64%	1
Ld	20%	4
	Total	16

Tabl. 174: 2022: GC46/1 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 16 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

37 + 15 + 16 = 68 points soit un EQR de 0,68

Ce résultat classe le site de la Pointe St Gildas en « bon » pour cette deuxième saison d'échantillonnage.

8) GC46-Loire (large) – 2^e site:

Pour la GC46 (Loire (large)), la notation est basée sur une 2^e station, l'Herbaudière.

➤ Mission de printemps :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 175 :

Ceinture	Recouvrement	Points
Pc	25%	3
Fspi	75%	8
An/Fves	25%	4
Fser	80%	9
Ld	75%	7
	Total	31

Tabl. 175: 2022: GC46/2 - CCO/Couverture algale au printemps

On obtient 31 points sur les 35 possibles pour les cinq ceintures échantillonnées. En ramenant cette note sur un total de 40 points on obtient donc, au printemps, 35,43 points sur les 40 possibles pour la deuxième métrique du CCO.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 176 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	5 espèces	30
An/Fves	2 espèces	5
Fser	5 espèces	10
Ld	4 espèces	10
	Total	55

Tabl. 176: 2022: GC46/2 – CCO/Espèces caractéristiques au printemps

On obtient 55 points sur les 120 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 13,75 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 177 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	39.58%	2
An/Fves	43.67%	2
Fser	41.5%	2
Ld	17.2%	4
	Total	10

Tabl. 177: 2022: GC46/2 – CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 10 points sur les 24 possibles, soit 12,5 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

35,43 + 13,75 + 12,5 = 61,68 points soit un EQR de 0,62

Ce résultat classe le site de l'Herbaudière en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 178 :

Ceinture	Recouvrement	Points
Pc	3%	1
Fspi	10%	3
An/Fves	40%	6
Fser	50%	7
Ld	100%	7
	Total	24

Tabl. 178: 2022: GC46/2 - CCO/Couverture algale à l'automne

On obtient 24 points sur les 35 possibles pour les six ceintures échantillonnées, soit 27,43 points sur 40.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 179 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	4 espèces	30
An/Fves	3 espèces	10
Fser	4 espèces	10
Ld	5 espèces	10
	Total	60

Tabl. 179 : 2022 : GC46/2 – CCO/Espèces caractéristiques à l'automne

On obtient 60 points sur les 120 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, à l'automne, 15 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 180 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	-	6
An/Fves	30%	2
Fser	15%	4
Ld	22%	4
	Total	16

Tabl. 180: 2022: GC46/2 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 16 points sur les 24 possibles, soit 20 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

27,43 + 15 + 20 = 62,43 points soit un EQR de 0,62

Ce résultat classe le site de l'Herbaudière en « bon » pour cette deuxième saison d'échantillonnage.

9) **GC47-Ile d'Yeu** :

Pour la GC47 (Ile d'Yeu), la notation est basée sur la station de Sabias.

➤ Mission de printemps :

- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 181:

Ceinture	Recouvrement	Points
Pc	30%	5
Fspi	30%	6
An/Fves	70%	4
Fser	70%	5
He/Bb	100%	8
Ld	-	-
	Total	28

Tabl. 181: 2022: GC47 – CCO/Couverture algale au printemps

On obtient 28 points sur les 35 possibles pour les cinq ceintures échantillonnées. En ramenant cette note sur un total de 40 points on obtient donc, au printemps, 32 points sur les 40 possibles pour la deuxième métrique du CCO.

-Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 182 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	2 espèces	10
An/Fves	5 espèces	20
Fser	5 espèces	10
He/Bb	8 espèces	20
	Total	60

Tabl. 182 : 2022 : GC47 – CCO/Espèces caractéristiques au printemps

On obtient 60 points sur les 120 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 15 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 183 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	3.17%	6
An/Fves	15.83%	4
Fser	8.0%	4
Не	11.33%	4
	Total	18

Tabl. 183: 2022: GC47 - CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 18 points sur les 24 possibles, soit 22,5 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

32 + 15 + 22.5 = 69.5 points soit un EQR de 0.69

Ce résultat classe le site de Sabias en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne pour la couverture est donné dans le tableau 184 :

Ceinture	Recouvrement	Points
Pc	20%	3
Fspi	40%	3
An/Fves	80%	9
Fser	60%	7
He/Bb	95%	7
Ld	100%	5
	Total	34

Tabl. 184: 2022: GC47 – CCO/Couverture algale à l'automne

On obtient 34 points sur les 40 possibles pour les six ceintures échantillonnées.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 185 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	3 espèces	20
An/Fves	3 espèces	10
Fser	5 espèces	10
He/Bb	5 espèces	10
Ld	5 espèces	10
	Total	60

Tabl. 185 : 2022 : GC47 – CCO/Espèces caractéristiques à l'automne

On obtient 60 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, à l'automne, 12 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 186 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	4.8%	6
An/Fves	14.9%	4
Fser	5%	6
He	8.3%	4
Ld	6.7%	4
	Total	24

Tabl. 186: 2022: GC47 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient pour le site de Sabias 24 points sur les 30 possibles.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

34 + 12 + 24 = 70 points soit un EQR de 0,70

Ce résultat classe le site de Sabias en « bon » pour cette deuxième saison d'échantillonnage.

10) GC50-Nord Sables d'Olonne:

Pour la GC50 (Nord sables d'Olonnes), la notation est basée sur la station de la Sauzaie (Brétignolles).

- ➤ Mission de printemps :
- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 187:

Ceinture	Recouvrement	Points
Pc	-	-
Fspi	-	-
An/Fves	75%	8
Fser	20%	3
He/Bb	80%	9
	Total	20

Tabl. 187: 2022: GC50 – CCO/Couverture algale au printemps

On obtient 20 points sur les 24 possibles pour les trois ceintures échantillonnées. En ramenant cette note sur un total de 40 points on obtient donc, au printemps, 33,3 points sur les 40 possibles pour la deuxième métrique du CCO.

-Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 188 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	-	-
An/Fves	2 espèces	5
Fser	4 espèces	10
He/Bb	3 espèces	5
	Total	20

Tabl. 188: 2022: GC50 - CCO/Espèces caractéristiques au printemps

On obtient 20 points sur les 90 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 6,7 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 189 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	-	ı
An/Fves	5%	4
Fser	13,17%	4
He/Bb	3%	6
	Total	16

Tabl. 189: 2022: GC50 – CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 14 points sur les 18 possibles, soit 23,33 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

33.3 + 6.67 + 23.33 = 63.33 points soit un EQR de 0.63

Ce résultat classe le site de la Sauzaie en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne, pour le site du Croisic pour la couverture est donné dans le tableau 190 :

Ceinture	Recouvrement	Points
Pc	-	ı
Fspi	-	-
An/Fves	75%	9
Fser	5%	2
He/Bb	50%	7
	Total	18

Tabl. 190: 2022: GC50 - CCO/Couverture algale à l'automne

On obtient 18 points sur les 24 possibles pour les six ceintures échantillonnées, soit 30 points sur 40.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 191 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	-	-
An/Fves	4 espèces	10
Fser	0 espèce	0
He/Bb	2 espèces	5
	Total	15

Tabl. 191: 2022: GC50 – CCO/Espèces caractéristiques à l'automne

On obtient 15 points sur les 90 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, à l'automne, 5 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 192 :

Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	1	ı
An/Fves	4.7%	6
Fser	0.67%	6
He/Bb	9.33%	4
	Total	16

Tabl. 192: 2022: GC50 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 16 sur les 18 possibles, soit 26,7 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

30 + 5 + 26,67 = 61,67 points soit un EQR de 0,62

Ce résultat classe le site de la Sauzaie en « bon » pour cette deuxième saison d'échantillonnage.

11) GC53-Pertuis Breton:

Pour la GC53 (Pertuis breton), la notation est basée sur la station de Grouin NE (Ile de Ré).

➤ <u>Mission de printemps</u> :

- Métrique 1 du CCO: La couverture algale: Le nombre de points obtenu, au printemps pour la couverture est donné dans le tableau 193 :

Ceinture	Recouvrement	Points
Pc	-	-
Fspi	2,5-5%	1
An/Fves	5-10%	3
Fser	75-100%	9
He/Bb	50-75%	5
Ld	75-100%	7
	Total	20

Tabl. 193: 2022: GC53 – CCO/Couverture algale au printemps

On obtient 25 points sur les 35 possibles pour les cinq ceintures échantillonnées. En ramenant cette note sur un total de 40 points on obtient donc, au printemps, 28,57 points sur les 40 possibles pour la première métrique du CCO.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 194 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	1 espèce	5
An/Fves	5 espèces	20
Fser	5 espèces	20
He/Bb	5 espèces	10
Ld	5 espèces	10
	Total	65

Tabl. 194 : 2022 : GC53 – CCO/Espèces caractéristiques au printemps

On obtient 65 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, au printemps, 13,00 points sur les 30 possibles pour la deuxième métrique du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 195 :

sie de permes est dermies duns is theiredd i ye t		
Ceinture	Recouvrement opportunistes	Points
Pc/Fspi	-	-
An/Fves	5%	4
Fser	13,17%	4
He/Bb	3%	6
Ld		
	Total	16

Tabl. 195: 2022: GC53 – CCO/Espèces opportunistes au printemps

Pour la troisième métrique du CCO, on obtient 24 points sur les 30 possibles, soit 24 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient au printemps :

28,57 + 13 + 24 = 65,57 points soit un EQR de 0,65

Ce résultat classe le site de Grouin NE en « bon » pour cette première saison d'échantillonnage.

➤ Mission d'automne :

- Métrique 1 du CCO : La couverture algale : Le nombre de points obtenu, en automne, pour le site du Croisic pour la couverture est donné dans le tableau 196 :

Ceinture	Recouvrement	Points
Pc	-	-
Fspi	0-2.5%	4
An/Fves	25-50%	2
Fser	50-75%	1
He/Bb	50-75%	3
Ld	75-100%	5
	Total	24

Tabl. 196: 2022: GC53 - CCO/Couverture algale à l'automne

On obtient 24 points sur les 35 possibles pour les cinq ceintures échantillonnées, soit 27,43 points sur 40.

- Métrique 2 du CCO : Les espèces caractéristiques : En fonction du nombre d'espèces retenues on obtient les résultats donnés dans le tableau 197 :

Ceinture	Nombre d'espèces retenues	Points
Pc/Fspi	0 espèce	0
An/Fves	5 espèces	20
Fser	5 espèce	20
He/Bb	4 espèces	10
Ld	2 espèces	5
	Total	15

Tabl. 197 : 2022 : GC53 – CCO/Espèces caractéristiques à l'automne

On obtient 55 points sur les 150 points possibles. En ramenant cette note sur un total de 30 points on obtient donc, à l'automne, 11,00 points sur les 30 possibles pour le deuxième point du CCO.

- Métrique 3 du CCO : Les espèces opportunistes : La conversion du pourcentage de recouvrement par les espèces opportunistes en nombre de points est donnée dans le tableau 198 :

Ceinture	Ceinture Recouvrement opportunistes			
Pc/Fspi	0.56%	6		
An/Fves	10.56%	4		
Fser	15.83%	4		
He/Bb	22.78%	4		
Ld	13.61%	4		
	Total	22		

Tabl. 198: 2022: GC53 – CCO/Espèces opportunistes à l'automne

Pour la troisième métrique du CCO, on obtient 22 sur les 30 possibles, soit 22,00 points sur 30.

- Note globale : Au total, en ajoutant les points obtenus pour les trois métriques du CCO (la couverture, les espèces caractéristiques et les espèces opportunistes), on obtient en automne :

27,43 + 11 + 22 = 60,43 points soit un EQR de 0,60

Ce résultat classe le site de de Grouin NE en « bon » pour cette deuxième saison d'échantillonnage.

5. <u>Discussion</u>:

1) Variations intra-annuelles:

- Pour Malban-GC08, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 199 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	30 points	26 points	28 points	84 points
Automne 2022	30 points	22 points	26 points	78 points

Tabl. 199: Malban - Notations au printemps et à l'automne 2022

Pour le premier sous-indice du CCO, la note est restée la même pour les deux échantillonnages. Avec 30 points, c'est une note moyenne qui traduit un manque de couverture algale important dans les trois communautés de haut d'estran.

Pour le deuxième sous-indice du CCO, il y a plus de variation avec notamment une perte de points au niveau des communautés à *Himanthalia elongata* et à *Laminaria digitata*. Dans la première nous sommes passés de dix espèces caractéristiques retenues et trente points au printemps à huit espèces retenues et vingt points à l'automne. Les deux espèces perdues sont *Cladophora rupestris* et *Cryptopleura ramosa*. Ces deux espèces sont toujours présentes à l'automne mais leurs recouvrements respectifs sont passés sous la barre des 2.5%. On avait le même cas en 2019 où ces deux espèces sensibles aux chaleurs et à l'ensoleillement excessifs ont du mal à subsister pendant l'été. Toutes les autres espèces retenues au printemps sont également présentes à l'automne avec des recouvrements qui dépassent largement les 2.5%. Dans la communauté à *Laminaria digitata*, onze espèces avaient été retenues au printemps alors qu'il n'en reste que huit à l'automne. Les espèces perdues sont *Himanthalia elongata*, *Calliblepharis jubata* et *Cryptopleura ramosa*. Pour les himanthales cela résulte de la distribution hétérogène de l'espèce à ce niveau bathymétrique et au fait que les quadrats échantillonnés ne sont pas les mêmes lors des deux échantillonnages. Pour les espèces *Calliblepharis jubata* et *Cryptopleura ramosa* il s'agit, par contre, clairement d'un effet saisonnier car elles sont toutes les deux sensibles au fort ensoleillement estival qui les fait blanchir puis disparaître.

Pour le troisième sous-indice du CCO, il y a une perte de deux points entre les deux échantillonnages. Les espèces opportunistes sont présentes dans toutes les communautés mais leurs pourcentages de recouvrement ne dépassent 5% que dans la communauté à *Fucus serratus* au printemps et dans les communautés à *Fucus vesiculosus* et à *Fucus serratus* à l'automne. Au printemps, dans la communauté à *Fucus vesiculosus*, les espèces opportunistes sont représentées par l'algue rouge *Ceramium virgatum* (0.28%) et par les algues *vertes Ulva compressa* (0.28%) et *Ulva spp.* (2.22%). A l'automne, le recouvrement par les espèces opportunistes a nettement augmenté et atteint 9.45%. On retrouve, dans les

quadrats, les deux algues vertes précédentes mais avec des recouvrements respectifs de 3.06% et 2.5%. A ces espèces il faut ajouter *Elaschista fucicola* (1.67%), une algue brune filamenteuse qui se développe sur les thalles de *Fucus vesiculosus* et un peu d'*Ulva clathrata* (2.22%). La présence des deux dernières espèces n'a rien de surprenant car il s'agit d'espèces plutôt estivales qui apparaissent à la fin du printemps pour disparaître à la fin de l'automne. Pour l'algue verte *Ulva compressa* qui classiquement se développe tôt au printemps et qui disparaît souvent au début de l'été, on aurait dû, par contre, avoir une régression entre les deux échantillonnages. Il est vraisemblable que nous soyons en présence d'une deuxième génération de thalles qui ont profité de conditions climatiques favorables pour se développer à la fin de l'été ou au début de l'automne.

Avec des notes de 28 points au printemps et de 26 points à l'automne, on notera que le site de Malban obtient, pour le troisième sous-indice du CCO, des notes particulièrement élevées, supérieures à celles obtenues sur de nombreux autres sites. Les pertes de points entre les échantillonnages de printemps et d'automne font passer le site sous la barre des 80 points qui sépare les catégories « Très Bon » et « Bon ». Mais plus que les variations des notes des deuxième et troisième sous-indices du CCO, c'est la faiblesse de la note du premier sous-indice qui place le site dans cette situation. La note de 30 points résulte clairement de recouvrements algaux très moyens dans la première partie de l'estran.

- Pour Molène - GC18, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 200 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	37 points	24 points	26 points	87 points
Automne 2022	38 points	24 points	28 points	90 points

Tabl. 200 : Molène - Notations au printemps et à l'automne 2022

Pour le premier sous-indice du CCO, il y a un gain d'un point entre les deux échantillonnages. Ce gain se situe au niveau de la communauté à *Pelvetia canaliculata* où le recouvrement algal est passé de 70% au printemps à 80% à l'automne. Cette augmentation est due à un fort recrutement de jeunes thalles de *Pelvetia canaliculata* dont le recouvrement moyen, dans les quadrats passe de 25% au printemps à 40% en automne.

Pour le deuxième sous-indice du CCO, les notes de printemps et d'automne sont identiques. Dans le détail la répartition des points est légèrement différente. Pour l'échantillonnage de printemps nous avons obtenu 10 points sur 30 dans la communauté à Ascophyllum nodosum et 20 points sur 30 dans celle à Fucus serratus. A l'automne c'est l'inverse et nous avons 20 points pour la première communauté et 10 points pour la seconde. Dans la communauté à Ascophyllum nodosum nous avons retenu quatre espèces caractéristiques au printemps et cinq à l'automne. Entre les deux échantillonnages nous avons perdu l'espèce Fucus serratus et gagné les espèces Fucus vesiculosus et Gelidium pusillum. Pour la perte de Fucus serratus, il s'agit probablement du résultat du tirage au sort des quadrats échantillonnés. En effet cette espèce est surtout présente dans la partie basse de la communauté. A l'automne, nous l'avons retrouvée dans certains des quadrats mais son recouvrement moyen, sur les neuf quadrats n'est que de 1.94%, ce qui l'exclut. Pour Fucus vesiculosus nous sommes dans le même cas de figure. L'espèce est typique de ce niveau bathymétrique mais elle est largement supplantée par Ascophyllum nodosum sur le site de Molène où elle n'apparaît que par taches sous les ascophylles. Elle est présente dans les quadrats au printemps mais avec seulement un recouvrement moyen de 0.83%. Ce recouvrement atteint par contre 3.61% dans les quadrats échantillonnés en automne. L'espèce Gelidium pusillum retenue lors de l'échantillonnage d'automne grâce à un recouvrement moyen de 3.61% était par contre absente dans les quadrats échantillonnés au printemps. L'espèce a donc profité de l'été et/ou du début de l'automne pour se développer. Dans la communauté à Fucus serratus nous avons retenu sept espèces caractéristiques au printemps alors qu'il n'en reste que quatre à l'automne. Les espèces non retenues entre les deux échantillonnages sont : Chondrus crispus, Gelidium spinosum et Lithophyllum incrustans. Toutes ces espèces sont pérennes et la différence correspond davantage à un effet « quadrat » qu'à un effet saisonnier. Il faut noter que cette communauté est ici largement dominée par trois espèces (Fucus serratus, Phymatolithon lenormandii et Mastocarpus stellatus) qui laissent peu de place à l'installation d'autres espèces.

Pour le troisième sous-indice du CCO, il y a un gain de deux points entre le printemps et l'automne. Ce gain se situe au niveau de la communauté à *Laminaria digitata* où le pourcentage de recouvrement par les espèces opportunistes est passé de 6.11% au printemps à 4.45% à l'automne. Au printemps on observe, dans les quadrats, deux espèces opportunistes : *Ulva* compressa et *Ulva* sp. Ces deux espèces ont des recouvrements aux alentours de 3%. A l'automne les ulves ont toujours un recouvrement proche de 3% mais celui des entéromorphes a chuté à 0.56%. Cette diminution est un phénomène courant. L'entéromorphe *Ulva compressa* se développe à la fin de l'hiver et au début du printemps puis régresse sous l'effet des fortes chaleurs et de l'ensoleillement estival. Ce phénomène touche moins les ulves que l'on retrouve toute l'année sur le site.

Avec des notes de 87 et 90 points au cours des deux échantillonnages, le site de Molène se classe très haut dans la catégorie « Très Bon ». C'est un site très stable dans le temps avec beaucoup d'espèces pérennes bien implantées. En contrepartie c'est un site où la diversité spécifique est très moyenne car on y observe peu d'espèces annuelles.

- Pour <u>Keragan / Fort Bloqué - GC34</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 201 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	32 points	10 points	24 points	66 points
Automne 2022	32 points	9 points	24 points	65 points

Tabl. 201 : Keragan/Fort Bloqué - Notations au printemps et à l'automne 2022

Pour le premier sous-indice du CCO, la note des deux échantillonnages est la même mais il existe des augmentations importantes de la couverture algale dans les communautés à *Fucus spiralis* et à *Ascophyllum nodosum*. Dans la première, on passe d'un recouvrement algal de 20% au printemps à 40% à l'automne. Dans le détail cela résulte de la forte augmentation de la quantité d'algues vertes présentes au sein de la communauté alors que la quantité de fucus reste globalement la même. Cette présence d'algues vertes est en grande partie due à une arrivée d'eau douce dans la partie Est de la plage. A ce niveau il subsiste à marée basse une grande mare colonisée toute l'année par les ulves et les entéromorphes. Elle sert de réservoir pour des colonisations sur les roches les plus proches. Dans la communauté à *Ascophyllum nodosum* le recouvrement algal passe de 10% au printemps à 20% à l'automne. Là aussi c'est grâce à l'augmentation de la quantité des algues opportunistes que le recouvrement algal évolue. On retrouve notamment des ulves et des entéromorphes mais aussi plusieurs espèces du genre *Ceramium*. Par contre il n'y a aucune amélioration au niveau du nombre de thalles d'*Ascophyllum nodosum*. L'espèce est toujours présente sur le site, mais il ne reste que de rares thalles rabougris et épars.

Pour le deuxième sous-indice du CCO, la note est faible au printemps et encore plus à l'automne avec aucune espèce caractéristique, et donc aucun point, dans la communauté à Ascophyllum nodosum. Il y a très peu d'espèces caractéristiques en haut d'estran dans les communautés à Fucus spiralis et à Ascophyllum nodosum. Elles sont davantage présentes dans la communauté à Fucus serratus où l'on obtient la note de vingt points sur trente. En bas d'estran, les notes sont faibles avec seulement cinq ou six espèces caractéristiques retenues dans les communautés à Bifurcaria bifurcata et à Laminaria digitata. Les couvertures algales y sont importantes mais elles sont assurées par un nombre d'espèces réduit. Ainsi dans la communauté à Bifurcaria bifurcata on observe deux espèces dominantes (Bifurcaria bifurcata et Rhodothamniella floridula) et trois espèces bien représentées (Chondracanthus acicularis, Corallina elongata et Mastocarpus stellatus). Ce phénomène se retrouve dans la communauté à Laminaria digitata. Pour le troisième sous-indice du CCO, nous avons obtenu 24 points au printemps et à l'automne. Mais la répartition des points par communauté est légèrement différente entre les deux échantillonnages. Au printemps, dans la communauté à Fucus spiralis, le recouvrement par les espèces opportunistes est de 2.78% ce qui permet l'obtention de six points sur six. A l'automne ce pourcentage atteint 11.66% et la note est de quatre points sur six. A l'inverse nous avons obtenu quatre points dans la communauté à Bifurcaria bifurcata au printemps et six points à l'automne. En automne il y a eu apparition de l'algue verte Ulva clathrata dans toutes les communautés de l'estran. C'est cette espèce estivale présente en grande quantité dans la communauté à Fucus spiralis qui fait perdre des points à l'automne. Dans la communauté à Bifurcaria bifurcata c'est la diminution de la quantité d'ulves dont le recouvrement passe

de 7.78% à 0.83% qui permet un gain de points entre les deux échantillonnages. On notera également qu'au printemps les espèces opportunistes se limitent à des ulves et des entéromorphes alors qu'à l'automne on trouve en plus quelques espèces d'algues rouges. Elles sont toutes en faible quantité excepté, *Melanothamnus harveyi*, dont le recouvrement atteint 2.22% dans la communauté à *Laminaria digitata*.

Avec des notes de 66 et 65 points, le site de Fort bloqué se situe dans la partie basse de la catégorie « Bon ». La faiblesse du nombre d'espèces caractéristiques est vraiment le premier point noir du site, le second étant l'état déplorable de la communauté à *Ascophyllum nodosum* qui a quasiment disparu, laissant apparaître de grandes zones de roche nue.

- Pour <u>Pénerf – GC44</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 202 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	36.57 points	16.25 points	25 points	77.82 points
Automne 2022	35.43 points	12.5 points	25 points	72.93 points

Tabl. 202 : Pénerf - Notations au printemps et à l'automne 2022

Pour le premier sous-indice du CCO, il y a eu une perte d'un point dans la communauté à *Fucus spiralis*. Le recouvrement algal estimé à 90% lors de l'échantillonnage de printemps a chuté à 50% en automne. Cette érosion concerne toute la partie haute de la communauté mais n'a pas impacté nos points d'échantillonnages situés un peu plus bas sur l'estran. C'est la première fois que nous observons un changement saisonnier aussi important sur ce site et il faudra d'autres échantillonnages pour voir s'il s'agit d'un phénomène ponctuel ou si c'est le début d'une dégradation qui va s'amplifier dans le temps.

Pour le deuxième sous-indice du CCO, la note déjà très moyenne au printemps a encore baissé à l'automne. C'est au niveau de la communauté à *Ascophyllum nodosum* que des points ont été perdus. Au printemps nous avons retenu six espèces caractéristiques dont le recouvrement est supérieur ou égal à 2.5%. A l'automne il n'en reste que deux : *Ascophyllum nodosum* et *Fucus vesiculosus*. Parmi les quatre autres, deux ont maintenant un pourcentage de recouvrement inférieur à 2.5% et deux sont absentes des quadrats. Il y a probablement là un effet saisonnier mais aussi un effet « quadrat ». Plus bas sur l'estran il y a peu d'espèces caractéristiques dans les communautés à *Fucus serratus* et à *Himanthalia elongata*. Dans ces deux communautés l'espèce *Osmundea pinnatifida* retenue au printemps n'a pas atteint le seuil des 2.5% de recouvrement à l'automne. L'espèce a souffert des fortes chaleurs estivales.

La perte d'une espèce n'a pas impacté la note de ces communautés.

Pour le troisième sous-indice du CCO la note est restée la même entre les deux échantillonnages. Dans le détail il y a eu une perte de points dans la communauté à *Himanthalia elongata*, perte compensée par un gain de points dans la communauté à *Ascophyllum nodosum*. Au printemps, dans cette dernière on observe deux espèces opportunistes, *Ulva* sp. et *Ulva compressa*. La somme de leurs recouvrements dépasse légèrement 5% et la note obtenue est de quatre points sur six. A l'automne ces deux espèces sont toujours présentes mais elles sont devenues rares et la somme de leurs recouvrements n'est que de 0.56%; on obtient donc la note de six points sur six pour cet échantillonnage. Dans la communauté à *Himanthalia elongata* on observe le phénomène inverse. Les ulves, peu présentes au printemps, sont plus nombreuses à l'automne et leur recouvrement atteint 6.67% dans les quadrats ce qui fait passer la note de la communauté de six à quatre points.

Le site de Penerf obtient au cours des deux échantillonnages des notes qui le placent dans la catégorie « Bon ». Il obtient notamment de très bonnes notes pour le premier-sous-indice du CCO. La dégradation importante de la couverture algale dans la communauté à *Fucus spiralis* est néanmoins à surveiller. Les notes pour le deuxième sous-indice sont très moyennes et représentatives de communautés peu structurées en bas d'estran avec par exemple une absence totale de canopée dans la communauté à *Himanthalia elongata* où l'espèce dominante est *Chondracanthus acicularis*, une algue rouge qui se développe très bien dans les milieux légèrement ensablés. Les notes du troisième sous-indice sont bonnes et compensent celles du sous-indice précédent.

- Pour <u>Le Croisic - GC45</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 203 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	35 points	14 points	20 points	69 points
Automne 2022	34 points	9 points	24 points	67 points

Tabl. 203 : Le Croisic - Notations au printemps et à l'automne 2022

Pour le premier sous-indice du CCO, les notes sont élevées mais un point a été perdu entre l'échantillonnage de printemps et celui d'automne. Cette perte se situe au niveau de la communauté à *Pelvetia canaliculata*. Au printemps on y observe de nombreux thalles de *Pelvetia canaliculata* et de *Fucus spiralis*. En automne la quantité de thalles de pelvetie a nettement baissé et les thalles de *Fucus spiralis* ont quasiment disparu. Les chaleurs estivales sont responsables de ce phénomène. Elles ont surtout impacté les thalles de fucus qui s'étaient installés à un niveau bathymétrique un peu trop élevé pour l'espèce. Dans les autres communautés, il y a peu ou pas de changement saisonnier. La couverture algale reste faible dans la communauté à *Ascophyllum nodosum* alors qu'elle est très élevée dans les quatre communautés de bas d'estran.

Pour le deuxième sous-indice du CCO, la note obtenue, déjà sous la moyenne au printemps est très faible à l'automne. Dans toutes les communautés le nombre d'espèces caractéristiques retenues est plus faible à l'automne qu'au printemps. Dans la communauté à Ascophyllum nodosum nous avons retenu une seule espèce caractéristique au printemps, l'algue rouge Mastocarpus stellatus, présente sous sa forme encroûtante Petrocelis cruenta. Cette espèce est absente des relevés d'automne et elle est remplacée par une autre espèce encroûtante Hildenbrandia rubra. A la suite du décès d'Erwan Ar Gall au cours de l'été 2022, ce sont d'autres échantillonneurs qui ont réalisé le suivi automnal. Les croutes rouges visibles sur la roche ont été interprétées, au printemps, comme appartenant à Mastocarpus stellatus alors qu'elles ont été identifiées comme de l'Hildenbrandia rubra à l'automne. C'est donc un biais échantillonneur qui fait perdre, à l'automne, la seule espèce caractéristique qui a été retenue dans cette communauté au printemps. Dans la communauté à Fucus serratus, le nombre d'espèces caractéristiques retenues est passé de six à trois. Quatre des six espèces (Chondrus crispus, Corallina sp., Phymatolithon lenormandii et Mastocarpus stellatus) ont à l'automne des recouvrements inférieurs à 2.5%. A l'inverse une nouvelle espèce (Osmundea pinnatifida) a été retenue lors du second échantillonnage. Si pour les lithothamnes il s'agit en partie au moins d'un effet quadrat, pour les autres c'est principalement d'une conséquence des fortes chaleurs estivales. Dans les deux dernières communautés deux espèces n'ont pas été retenues en le printemps et l'automne. Dans les deux cas ces espèces sont Chondrus crispus et Corallina sp. Dans les deux cas également, nous avons une nouvelle espèce dont le recouvrement dépasse 2.5% et il s'agit à chaque fois d'Osmundea pinnatifida. Nous sommes en présence de deux communautés où le nombre d'espèces caractéristiques est très faible. Beaucoup d'espèces ont du mal à se développer sur le platier rocheux qui est régulièrement recouvert d'une pellicule centimétrique de sédiments fins. Les corallines et les Chondrus présentes au printemps ont nettement régressé pendant l'été. A l'inverse, il y a eu dans les deux communautés, comme dans celle à Fucus serratus, un recrutement de jeunes thalles d'Osmundea. Pour le troisième sous-indice du CCO, la note est moyenne au printemps et meilleure à l'automne. Au printemps les espèces opportunistes sont présentes dans toutes les communautés ou regroupement de communautés avec des recouvrements supérieurs ou égaux à 5%. Ces espèces opportunistes sont quasiment exclusivement des entéromorphes (Ulva compressa et Ulva clathrata) et des ulves. Au printemps, dans le regroupement de communautés à Pelvetia canaliculata et Fucus spiralis et dans la communauté à Ascophyllum nodosum le recouvrement par les espèces opportunistes se situe juste à 5%. A l'automne la quantité d'espèce opportunistes a baissé sous ce seuil et cela a amélioré la note obtenue. Dans les deux cas les entéromorphes ont disparu entre les deux échantillonnages et les ulves ont largement diminué en nombre. Dans toutes les autres communautés le pourcentage de recouvrement par les espèces opportunistes reste supérieur à 5%, Dans la communauté à Fucus serratus, les ulves présentes au printemps ont régressé à l'automne mais de nouvelles espèces du genre Ceramium se sont développées durant l'été. Dans les deux dernières communautés c'est l'espèce Ulva clathrata qui domine largement au

printemps. A l'automne elle a considérablement régressé, mais comme dans la communauté précédente ce sont des espèces de *Ceramium* (*C. ciliatum* et *C. virgatum*) qui sont maintenant présentes. Les ulves sont quant à elles présentes à un faible niveau lors des deux échantillonnages.

Le site du Croisic obtient au cours des deux échantillonnages des notes qui le placent dans la catégorie « Bon ». Les notes pour le premier sous-indice sont élevées malgré une communauté à *Ascophyllum nodosum* très dégradée. Les notes obtenues pour le deuxième sous-indice sont faibles. Elles intègrent la quasi-absence d'algues dans la communauté à *Ascophyllum nodosum* mais aussi la pauvreté des communautés de bas d'estran en espèces caractéristiques. Les notes du troisième sous-indice sont assez bonnes mais les espèces opportunistes sont présentes sur presque tout l'estran aussi bien au printemps qu'à l'automne.

- Pour <u>Pte St Gildas - GC46</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 204 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	37,71 points	13,75 points	27,5 points	78,98 points
Automne 2022	37 points	15 points	16 points	67 points

Tabl. 204 : Pte St Gildas - Notations au printemps et à l'automne 2022

Dans l'objectif de comparer avec la saison précédente, le calcul a aussi été réalisé sans les données obtenues sur la ceinture à laminaires (non échantillonnée au printemps). Le résultat obtenu serait ainsi de 61,42 (M1 35,42 +M2 11 +M3 15). Les notes calculées (avec ou sans la ceinture à laminaires) sont inférieures à celles calculées pour le printemps 2022 (78,96). Cette diminution est principalement due à la forte abondance d'algues opportunistes sur le site en automne (Fig. 29).

Fig. 29 : Saint Gildas : Recouvrement d'algues vertes à l'automne 2022

Il est important de noter une forte régression de la couverture algale dans tout le secteur de Saint Gildas entre 2004 et 2014, visible sur les images satellite (Fig. 30).

Les investigations de terrain dans ce secteur indiquent que les moulières qui pourraient apparaître en noir sur la carte ne sont qu'en limite du secteur subtidal.

Un indicateur surfacique serait pertinent pour compléter l'indicateur stationnel.

Fig. 30 : Evolution des surfaces de macroalgues dans le secteur de la Pointe de Saint-Gildas entre décembre 2004 (couverture annuelle minimale) et juin 2014 (couverture annuelle maximale)

(Image Google earth)

- Pour <u>L'Herbaudière - GC46</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 205 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	35,43 points	13,75 points	12,5 points	61,68 points
Automne 2022	27,43 points	15 points	20 points	62,43 points

Tabl. 205 : L'Herbaudière - Notations au printemps et à l'automne 2022

Malgré les bons résultats au niveau de l'indicateur stationnel, le site souffre d'une vaste réduction des ceintures algales en raison d'un rapide ensablement (Fig. 31) qui semble s'initié en 2014 (Fig. 32). Un indicateur surfacique serait pertinent sur ce site.

Fig. 31 : Ceinture ensablée (Fucus serratus et Ascophyllum nodosum) au printemps 2022 (Gauche) ; Ceinture ensablée (Fucus serratus) à l'automne 2022 (Droite)

Fig. 32 : Evolution de l'ensablement du secteur de l'Herbaudière (images satellites Google Earth)

- Pour <u>Sabias – GC47</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 206 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	32 points	15 points	22,5 points	69,5 points
Automne 2022	34 points	12 points	24 points	70 points

Tabl. 206 : Sabias - Notations au printemps et à l'automne 2022

Dans l'objectif de comparer avec la saison précèdent, le calcul a aussi été réalisé sans les données obtenues sur la ceinture à laminaire (non échantillonnée au printemps).

Le résultat obtenu est de 70,64 (M1 33,14 + M2 12,50 + M3 25).

Les notes calculées (avec ou sans la ceinture à laminaires) sont très proches de celle calculée au printemps 2022 (69,5).

L'analyse des images satellites des Sabias montre des variations de surface des ceintures algales subtidales.

En 2013 et 2019 le sable est accumulé sur la plage et les ceintures algales subtidales sont larges tandis qu'en 2014, le sable de la plage a été emmené vers le large diminuant la surface des ceintures algales subtidales (Fig. 33).

Fig. 33 : Evolution sédimentaire des Sabias (Yeu) (images Google Earth).

- Pour <u>La Sauzaie – GC50</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 207 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	33,3 points	6,67 points	23,33 points	63,33 points
Automne 2022	30 points	5 points	26,67 points	61,67 points

Tabl. 207 : La Sauzaie - Notations au printemps et à l'automne 2022

L'indicateur stationnel du site de la Sauzaie qualifie le site en bon état, cependant l'analyse des images satellites montre une forte régression de la ceinture algale dans ce secteur depuis 2014 (Fig. 34). Un indicateur surfacique serait pertinent sur ce site.

La colonisation du site par les hermelles est bien visible en 2021.

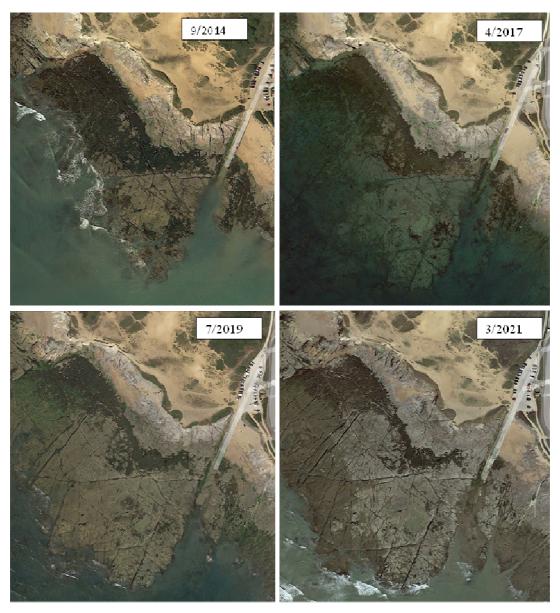


Fig. 34 : Evolution de la surface des ceintures algales sur le site de la Sauzaie entre 2014 et 2021 (images satellite Google Earth)

- Pour <u>Grouin NE - GC53</u>, les notes obtenues au printemps et à l'automne 2022 sont données dans le tableau 208 :

Echantillonnage	Sous-indice 1	Sous-indice 2	Sous-indice 3	Total
Printemps 2022	28,57 points	13 points	24 points	65,6 points
Automne 2022	27,43 points	11 points	22 points	60,43 points

Tabl. 208 : Grouin NE - Notations au printemps et à l'automne 2022

2) Variations inter-annuelles:

Pour quatre sites de surveillance, c'est le sixième échantillonnage depuis 2007. Globalement, une nette tendance à la baisse du CCO est enregistrée sur l'ensemble des sites, surtout à partir de la période 2016 – 2019 et surtout pour le site de Keragan / Fort Bloqué (Tabl. 209).

Site	2007	2010	2013	2016	2019	2022
Malban - GC08	80 points	83 points	87 points	88 points	84 points	81 points
Molène - GC18	83 points	91 points	86 points	89 points	86 points	88,5 points
Keragan - GC34	-	-	80,86 points	-	70,9 points	65,5 points
Belle-Ile – GC42	-	-	-	-	-	84,07 points
Pénerf - GC44	-	-	77 points	-	74 points	75,4 points
Le Croisic - GC45	78 points	78 points	78,85 points	71 points	73,5 points	68 points
Pte St Gildas - GC46	-	73 points	81 points	67,4 points	75,5 points	73,48 points
L'Herbaudière - GC46	-	73,03 points	66,65 points	64,6 points	69,9 points	62,05 points
Sabias - GC47	-	68,36 points	78 points	72 points	78 points	69,75 points
La Sauzaie - GC50	-	62,79 points	63,33 points	67,25 points	65,85 points	62,5 points
Grouin NE - GC53	69,58 points	77,42 points	77,85 points	70,2 points	68,21 points	63 points

Tabl. 209: Evolution du CCO de 2007 à 2022 pour les 11 sites de surveillance

- Le site de <u>Malban-GC08</u> est suivi depuis 2007, d'abord au printemps seulement puis également à l'automne à partir de 2013. Les résultats obtenus au cours des différents échantillonnages sont donnés dans le tableau 210 :

Année	2007	2010	2013	2016	2019	2022
printemps	80 points	83 points	87 points	87 points	86 points	84 points
automne	-	-	83 points	89 points	82 points	78 points

Tabl. 210 : Malban : Evolution saisonnière du CCO de 2007 à 2022

Au cours des différentes années le site est toujours resté dans la catégorie « Très Bon ». La seule exception est la note obtenue à l'automne 2022 qui rétrograde le site en catégorie « Bon ».

Pour le premier sous-indice du CCO, la note est passée de 32 points en 2019 à seulement 30 points en 2022. Cette perte se situe au niveau de la communauté à *Fucus spiralis* où la couverture végétale est passée de 30% à 15% entre les deux suivis. En trois ans il y a eu une forte dégradation de la couverture algale dans une communauté où celle-ci n'a jamais été très importante. Cette partie de l'estran est sous la menace de mouvements de gros galets et de blocs qui peuvent être déplacés lors des tempêtes. Cet environnement rend difficile le développement pérenne de la communauté.

Entre 2016 et 2019, il y avait également eu une perte de points dans la communauté à *Fucus vesiculosus* car le recouvrement avait chuté de 50% à 45%. En 2022 la dégradation s'est poursuivie et le recouvrement algal est maintenant de 35%. Il s'agit là aussi d'une érosion importante de la couverture algale en quelques années (Fig. 35), mais elle n'apparaît pas au niveau de la note qui reste identique en 2022 à celle de 2019.

Fig. 35: La couverture algale sur le point DCE An1 en mai 2010 et en mars 2022

Pour les deux autres sous-indices, il existe des différences faibles entre les notes mais il y a autant de variations intra-annuelles qu'interannuelles. Pour le deuxième sous-indice, les changements se situent surtout dans les communautés de bas d'estran où l'on a une saisonnalité de certaines espèces comme *Cryptopleura ramosa* ou *Palmaria palmata*. Pour le troisième sous-indice, les notes varient également légèrement mais restent très élevées. C'est à l'automne 2022 que l'on obtient la note la plus faible avec 26 points sur 30. Cette note maximale ayant déjà été atteinte lors des échantillonnages de l'automne 2016 et du printemps 2019. Les espèces opportunistes sont, le plus souvent, présentes dans toutes les communautés mais en faible quantité. C'est toujours au niveau des communautés à *Fucus vesiculosus* et à *Fucus serratus* qu'elles sont les plus nombreuses.

Le site de Malban qui avait été choisi comme site de référence car ne subissant aucun impact anthropique direct a toujours obtenu des notes de CCO élevées. Dès 2007 il présentait une différence de couverture algale entre les trois premières communautés de l'estran et les trois dernières. En haut d'estran ce recouvrement algal était plutôt moyen alors qu'il était très élevé en bas d'estran. Pendant l'hiver 2014 le site a subi de fortes tempêtes qui ont impacté négativement les communautés de haut d'estran. Depuis cette date, la couverture algale des communautés à *Pelvetia canaliculata* et des *Fucus spiralis* est resté au-dessous de la moyenne. La communauté à *Fucus vesiculosus*, avec des thalles de fucus sans vésicules, est typique d'un mode battu. A Malban elle montre une dégradation lente mais régulière de la couverture algale. La canopée qui n'a jamais été dense a en grande partie disparu et les espèces sous-jacentes ont également nettement diminué en superficie. Les communautés de bas d'estran sont restées beaucoup plus stables et leur recouvrement algal reste très important.

- Pour Molène - GC18, comme Malban, le site de Beg ar Loued est suivi depuis 2007. Les notes obtenues lors des différents échantillonnages sont données dans le tableau 211 :

Année	2007	2010	2013	2016	2019	2022
printemps	83 points	91 points	86 points	88 points	86 points	87 points
automne	_	-	86 points	90 points	86 points	90 points

Tabl. 211 : Molène : Evolution saisonnière du CCO de 2007 à 2022

Au cours de ces dix-huit années, le site a toujours obtenu une note supérieure à 80 points. Il est donc depuis l'origine du suivi placé dans la catégorie « très Bon ». Pour le premier sous-indice la note a varié aux cours des années et des saisons entre 36 et 40 points. Le minimum de 36 points a été obtenu au printemps 2013 alors que la note maximale de 40 points date de l'automne 2016. Pour les communautés à *Pelvetia canaliculata* et à *Fucus spiralis* les notes déjà bonnes en 2013 ont augmenté depuis cette date car les recouvrements algaux sont restés supérieurs à 75% pendant tous les échantillonnages, excepté celui observé dans la communauté à *Pelvetia canaliculata* au printemps 2022 qui n'est que de 70%. Dans la communauté à *Ascophyllum nodosum*, le recouvrement algal est resté entre 70 et 75% en 2013 et 2016. Il a chuté à 60% en 2019 et n'est plus que de 50% en 2022. Dans les trois dernières communautés, les recouvrements ont toujours été de 80% ou plus et ce depuis nos premiers échantillonnages.

Pour le deuxième sous-indice du CCO, les notes sont assez bonnes depuis 2013 et atteignent le plus souvent 24 points. L'année 2019 fait exception avec des notes de 20 points au printemps comme à l'automne. Dans les communautés à *Pelvetia canaliculata* et à *Fucus spiralis*, nous avons toujours retenu au moins quatre espèces caractéristiques et donc obtenu la note maximale. Les résultats sont plus moyens pour les deux communautés de milieu d'estran. Dans la communauté à *Ascophyllum nodosum* nous n'avons retenu, selon les échantillonnages, que de quatre à six espèces soit des notes de 10 ou 20 points sur les 30 possibles. Dans la communauté à *Fucus serratus* le minimum d'espèces d'espèce retenues est de quatre espèces en automne 2022 alors que le maximum est de sept espèces à l'automne de cette même année. Au cours du temps les notes ont varié de 10 à 20 points sur 30. Ces deux communautés présentent de grosses couvertures algales mais la diversité y est très moyenne. Dans la communauté à *Himanthalia elongata* nous avons retenu au cours des échantillonnages entre huit espèces (automne 2019) et onze espèces. Pour cinq des six derniers échantillonnages nous avons obtenu, la note maximale de 30 points. Pour la communauté à *Laminaria digitata* cette note maximale n'a été obtenue qu'en 2022. Pour les autres échantillonnages le nombre d'espèces obtenues est resté entre six et huit et les notes obtenues ont été de 10 et 20 points.

Pour le troisième sous-indice, depuis 2016, nous avons obtenu la note maximale en *Pelvetia canaliculata/Fucus spiralis* et en *Ascophyllum nodosum*. Les espèces opportunistes y sont rares. Leur recouvrement n'a dépassé les 5% que lors de l'échantillonnage de l'automne 2013. On retrouve presque la même chose pour la communauté à *Fucus serratus* où le pourcentage de recouvrement par les espèces opportunistes est resté sous les 5% en 2013, en 2016, à l'automne 2019 et en 2022. La seule exception est l'échantillonnage du printemps 2019 où l'on a atteint le seuil de 5%. Dans les deux dernières communautés les résultats sont plus variables. Dans la communauté à *Himanthalia elongata* nous n'avons obtenu la note maximale que lors de l'échantillonnage du printemps 2019. Lors des autres échantillonnages, nous n'avons obtenu que quatre points sur six avec des recouvrements par les espèces opportunistes qui allaient de 5.56% à 14.45%. Dans la communauté à *Laminaria digitata* nous avons obtenu six points sur six en automne 2016, en 2019 et à l'automne 2022. Les deux autres fois les recouvrements par les espèces opportunistes dépassaient les 5% mais n'étaient pas très élevés (6.11% et 10%).

Les notes pour le troisième sous-indice sont élevées voire très élevées depuis 2016. Les espèces opportunistes sont rares en haut d'estran. Elles sont un peu plus nombreuses en bas d'estran où l'on trouve un peu d'algues vertes avec parfois en plus quelques algues rouges annuelles de type *Polysiphonia* ou *Ceramium*. Le site de Molène reste d'une grande stabilité à travers le temps. Contrairement à ce qu'on observe sur des sites comme Le Dellec, Le Croisic ou Quiberon, la communauté à *Ascophyllum nodosum* se maintient à un bon niveau de recouvrement et les thalles d'ascophylles restent nombreux en nombre. A ce titre, Molène fait figure d'exception alors que les densités de cette espèce sont en forte diminution sur beaucoup des sites d'observation.

- Le site de <u>Keragan / Fort Bloqué - GC34</u>, prospecté en 2013 n'est suivi que depuis 2019. Les notes obtenues lors des différents échantillonnages sont données dans le tableau 212 :

Année	2013	2019	2022		
printemps	81 points	71 points	66 points		
automne	-	71 points	65 points		

Tabl. 212 : Keragan : Evolution saisonnière du CCO de 2013 et 2022

Le site dont la note le situait à la limite des catégories « Bon » et « Très Bon » lors de la prospection de 2013 a perdu depuis beaucoup de points et se retrouve en 2022 dans la partie basse de la catégorie « Bon ». Les 81 points du printemps 2013 sont probablement le résultat d'un échantillonnage lors de conditions exceptionnelles car en 2019 l'aspect général de l'estran avait peu varié, exception faite d'une diminution de la quantité d'ascophylles qui était déjà faible en 2013.

En 2019 et 2022 les notes obtenues pour le premier sous-indice du CCO sont plutôt moyennes (31 points en 2019 et 32 points en 2022). Le seul changement notable est un petit gain de point dans la communauté à *Fucus serratus* où le recouvrement algal est passé de 40% en 2019 à 60% en 2022. Pour les autres communautés présentes, la couverture algale reste faible dans celles à *Fucus spiralis* et à *Ascophyllum nodosum* alors qu'à l'inverse elle reste élevée dans les communautés à *Himanthalia elongata* et à *Laminaria digitata*.

C'est au niveau du deuxième sous-indice du CCO qu'il y a une forte diminution du nombre de points entre 2019 et 2022. En 2019 nous avions obtenu la note de 18 points sur 30 au printemps et 16 points sur 30 à l'automne. En 2022 les notes sont respectivement de 10 points et 9 points. Le nombre d'espèces caractéristiques était faible en haut d'estran en 2019 mais cela était compensé par la présence de nombreuses espèces caractéristiques dans les communautés à Fucus serratus, Himanthalia elongata et Laminaria digitata. En 2022 les notes des communautés de haut d'estran n'ont pas progressé et à l'inverse nous avons atteint la note de 0 points dans la communauté à Ascophyllum nodosum lors de l'échantillonnage d'automne. Dans la deuxième moitié de l'estran, nous avons perdu des espèces caractéristiques dans toutes les communautés présentes. Dans celle à Fucus serratus nous sommes passés de neuf espèces retenues en 2019 à sept et six espèces en 2022. Dans la communauté à Himanthalia elongata la perte était déjà importante entre le printemps 2019 (9 espèces) et l'automne de la même année (5 espèces). En 2022 nous sommes restés à cinq espèces retenues aussi bien au printemps qu'à l'automne. Dans la communauté à Laminaria digitata nous avions retenu dix espèces en 2019 ; il n'en reste que cinq au printemps 2022 et six à l'automne. Nous avons notamment perdu l'espèce ingénieure Laminaria

digitata. De ce fait nous avons perdu une grande partie de la canopée protectrice et cela a entrainé une diminution de la quantité ou la disparition de certaines espèces sensibles comme *Calliblepharis jubata*, *Cryptopleura ramosa*, *Lomentaria* articulata et *Palmaria palmata*. Avec des notes de dix points au printemps et neuf points à l'automne, le deuxième sous-indice est vraiment le point faible du site.

Pour le troisième sous-indice du CCO les notes sont restées à 24 points en 2019 et 2022 ce qui correspond à une note assez bonne.

Entre 2013 et 2019 le site avait perdu dix points. Cela résultait de pertes de points dans le haut d'estran pour le deuxième sous-indice et en bas d'estran pour le troisième sous-indice. Entre 2019 et 2022 la note a encore baissé. C'est encore dû à une diminution de la note du deuxième sous-indice. Cette note déjà faible en haut d'estran a maintenant chuté en bas d'estran. La couverture algale y reste élevée mais elle est assurée par un cortège réduit d'espèces. Le fait marquant de 2022 est la disparition des laminaires. Il sera intéressant de voir, en 2025, si ce phénomène n'était que transitoire.

- Comme le site précédent, le site de <u>Pénerf - GC44</u> n'est suivi que depuis 2013. Les notes obtenues sont données dans le tableau 213 :

Année	2013	2019	2022
printemps	78.9 points	68.95 points	77.82 points
automne	-	78.96 points	72.94 points

Tabl. 213 : Pénerf : Evolution saisonnière du CCO de 2013 et 2022

Depuis 2013 le site de Penerf est toujours classé dans la catégorie « Bon ». Néanmoins quelques variations existent depuis le premier échantillonnage.

Pour le premier sous-indice on observe une petite érosion de la note depuis 2013. Entre 2013 et 2019 il y a eu une perte de points au niveau de la communauté à *Pelvetia canaliculata* où la couverture algale est passée de 60% à 40%. Entre 2019 et 2022 il y a eu une nouvelle perte de point, cette fois au niveau de la communauté à *Himanthalia elongata* où la couverture algale est passée sous la barre des 75%. De plus, à l'automne, un autre point a été perdu dans la communauté à *Fucus spiralis* où la couverture algale a chuté presque de moitié et est passée de 90% à 50%. Comme mentionné dans le paragraphe Variations intra-annuelles, cette diminution pourrait être une conséquence de la canicule estivale de 2022. Malgré ces pertes de points, la note de ce premier sous-indice reste très élevée.

Pour le deuxième sous-indice du CCO les notes sont très moyennes depuis l'échantillonnage de 2013. Si la couverture algale est bonne, le nombre d'espèces caractéristiques est limité notamment en bas d'estran, dans les communautés à *Fucus serratus* et à *Himanthalia elongata*. Le recouvrement algal y est assuré par des espèces qui tolèrent la présence d'une fine couche de sédiment sur la roche. Nombre d'entre elles ne figurent pas la liste des espèces caractéristiques. Entre 2019 et le printemps 2022 la note de ce deuxième sous-indice est resté la même avec 16.25 points. Il y a bien eu quelques variations dans le nombre d'espèces retenues dans les différentes communautés, mais ces variations n'ont pas eu d'impact sur la note. A l'automne 2022 par contre, la note a chuté de quatre points. Ces points ont été perdus dans la communauté à *Ascophyllum nodosum* où le nombre d'espèces retenues est passé de six au printemps à seulement deux à l'automne. Ce point a déjà été discuté dans le paragraphe Variations intra-annuelles. Avec des notes comprises entre 17.5 points en 2013 et 12.5 points en 2022, ce deuxième sous-indice est le point faible du site de Penerf.

Pour le troisième sous-indice du CCO les notes de 2022 sont élevées et identiques à celle obtenue lors de l'échantillonnage de l'automne 2019. Les algues opportunistes sont présentes sur le site mais en quantité modeste. Au printemps 2022 nous n'avons notamment pas retrouvé les grandes quantités d'entéromorphes (*Ulva compressa*) et de *Pylaiella littoralis* qui avaient fait chuter la note lors de l'échantillonnage du printemps 2019.

- Le site <u>Le Croisic - GC45</u> est suivi depuis 2007. Les notes obtenues lors des différents échantillonnages sont données dans le tableau 214 :

Année	2007	2010	2013	2016	2019	2022
printemps	78 points	78 points	77 points	75 points	72 points	69 points
automne	=	=	79.3 points	67 points	75 points	67 points

Tabl. 214 : Le Croisic : Evolution saisonnière du CCO de 2007 à 2022

Depuis l'origine, le site a toujours été dans la catégorie « Bon ». Malgré cela nous observons depuis plusieurs années, une dégradation importante de la couverture algale en milieu d'estran (Fig. 36). Cette dégradation très nette au niveau visuel ne se répercute pas encore vraiment au niveau de la notation du site.

Fig. 36: Evolution de la couverture algale sur et autour du point An2 entre les printemps 2013 et le printemps 2022

Pour le premier sous-indice du CCO la note reste élevée au cours du temps et des échantillonnages et ce malgré une couverture algale faible dans la communauté à *Ascophyllum nodosum*. Cette note était de 35 points en 2016, de 36 points en 2019. Elle est retombée à 35 points au printemps 2022 et a atteint la note de 34 points en automne 2022. En haut d'estran la couverture algale de la communauté à *Pelvetia canaliculata* baisse régulièrement depuis 2016 mais elle se situait alors à un niveau particulièrement élevé puisqu'elle atteignait 85%. Au milieu d'estran, dans la communauté à *Ascophyllum nodosum*, la couverture algale était déjà très moyenne en 2016 date à laquelle elle se situait à 38%. Elle est restée supérieure à 30% en 2019 mais c'est depuis effondrée et n'est plus que de 15% en 2022. A l'inverse la couverture algale de la communauté à *Fucus serratus* augmente depuis 2016. Elle était de 40% au printemps 2016, de 75% en 2019 et atteint 80% à l'automne 2022. En bas d'estran les couvertures algales ont toujours été importantes (supérieures à 75%) alors même que les grandes algues brunes de type himanthales ou laminaires sont ici absentes.

Le deuxième point du CCO est le point faible du site du Croisic. Les notes déjà très moyennes en 2016 et en 2019 ont encore baissé en 2022. Lors des premiers échantillonnages les notes étaient bonnes en haut d'estran, moyennes et milieu d'estran et faibles dans les deux communautés de bas d'estran. En 2019 le nombres d'espèces caractéristiques retenu dans la communauté à *Ascophyllum nodosum* a baissé sérieusement à l'automne et est passé de cinq à deux espèces. En 2022 la note a encore baissé avec d'abord une perte de point dans la communauté à *Laminaria digitata* au printemps. A l'automne le phénomène a touché les quatre communautés de bas d'estran. Les fortes canicules de l'été 2022 pourraient être le facteur principal de cette dégradation. L'échantillonnage du printemps 2025 sera l'occasion de voir s'il y a une résilience de certaines espèces ou si au contraire, on reste à un niveau faible d'espèces caractéristiques dont le recouvrement algal atteint 2.5%. L'arrêt des échantillonnages d'automne ne permettra pas, par contre, de vérifier si le site continue de subir de fortes variations saisonnières comme en 2019 et 2022.

Pour le troisième sous-indice du CCO les notes sont analogues à celles de 2019. La note printanière est moyenne alors que celle de l'automne est assez bonne. Les espèces opportunistes sont présentes dans toutes les communautés algales. Elles sont plus nombreuses au printemps qu'à l'automne aussi bien en 2019 qu'en 2022. Pour les échantillonnages de printemps, alors que les espèces opportunistes avaient des recouvrements importants en 2019 dans les communautés de bas d'estran, ceux-ci sont plus faibles en 2022. En passant sous les 20%, cela a permis un gain de deux points entre l'échantillonnage de 2019 et 2022.

Alors que le site du Croisic s'était maintenu au-dessus de 75 points entre 2007 et 2013, il présente depuis plus de différences saisonnières. Les notes globales de 2022 sont de loin les plus basses que nous ayons enregistrées. Elles témoignent d'une dégradation du site au milieu et en bas d'estran.

- Pour Pte St Gildas - GC46, les notes obtenues depuis 2010 sont données dans le tableau 215 :

2010	2013	2016		201	19	2022		
Printemps	Printemps	Printemps	Automne	Printemps	Automne	Printemps	Automne	
73 points	81 points	66,8 points	68 points	78 points	73 points	78,96 points	68 points	

Tabl. 215 : Pte St Gildas : Evolution saisonnière du CCO de 2010 à 2022

Depuis 2010, les résultats de la Pte St Gildas ont toujours permis d'obtenir un statut de « bon », voire même « très bon » au printemps 2013.

- Pour <u>L'Herbaudière - GC46</u>, les notes obtenues depuis 2010 sont données dans le tableau 216 :

2010	2013	2016		2019		2022	
Printemps	Printemps	Printemps	Automne	Printemps	Automne	Printemps	Automne
73,03	66,65	69,5	59,7	69,4	70,4	61,68	62,43
points	points	points	points	points	points	points	points

Tabl. 216: L'Herbaudière: Evolution saisonnière du CCO de 2010 à 2022

Depuis 2010, les résultats de l'Herbaudière ont toujours permis d'obtenir un statut de « bon », hormis à l'automne 2016, qui a vu ce site qualifié de « moyen ».

- Pour Sabias - GC47, les notes obtenues depuis 2010 sont données dans le tableau 217 :

2010	2013	2016		2019		2022	
Printemps	Printemps	Printemps	Automne	Printemps	Automne	Printemps	Automne
68,36 points	78 points	78 points	66 points	82 points	74 points	69,5 points	70 points

Tabl. 217 : Sabias : Evolution saisonnière du CCO de 2010 à 2022

Depuis 2010, les résultats de Sabias ont toujours permis d'obtenir un statut de « bon », voire même « très bon », pour la première fois, au printemps 2019.

- Pour La Sauzaie - GC50, les notes obtenues depuis 2010 sont données dans le tableau 218 :

2010	2013	2016		2019		2022	
Printemps	Printemps	Printemps	Automne	Printemps	Automne	Printemps	Automne
62,79	63,33	71,1	63,4	68,4	63,3	63,33	61,67
points	points	points	points	points	points	points	points

Tabl. 218 : La Sauzaie : Evolution saisonnière du CCO de 2010 à 2022

Depuis 2010, les résultats de la Sauzaie ont toujours permis d'obtenir un statut de « bon ».

- Pour Grouin NE - GC53, les notes obtenues depuis 2010 sont données dans le tableau 219 :

2007	2010	2013	2016		20	19	2022		
Printemps	Printemps	Printemps	Printemps	Automne	Printemps	Automne	Printemps	Automne	
69,58	77,42	77,85	68,3	72,1	70,14	66,29	65,57	60,43	
points	points	points	points	points	points	points	points	points	

Tabl. 219 : Grouin NE : Evolution saisonnière du CCO de 2007 à 2022

Le statut écologique du site Grouin NE Loix (île de Ré) IR en 2022 est déclaré « bon » (Fig. 37) avec un total d'environ 65,6 et 60,4 points pour respectivement le printemps et l'automne (Tabl. 219). Le site présentait aux printemps 2007, 2010, 2013 puis aux printemps et automnes 2016 et 2019 un statut écologique également déclaré « bon » avec un total variant de 66 à 78 points.

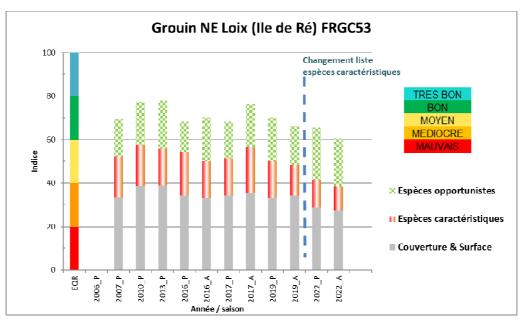


Fig. 37 : Variation interannuelle de la contribution des 3 indices « couverture & surface », « espèces caractéristiques » et « espèces opportunistes » à l'indicateur macroalgues de substrat dur intertidal pour la masse d'eau côtière « Pertuis Breton – FRGC53 »

Il est probable que les variations observées de 10 points de cet indice ne puissent pas être interprétées autrement que comme une variabilité naturelle interannuelle et saisonnière. Par rapport aux valeurs les plus basses, le gain de points s'effectue pour l'essentiel sur la couverture algale. En 2010 a été noté une plus forte densité et couverture de végétation puis en 2013 la détection de la ceinture d'algues rouges jusqu'alors non discernable entre la fin de la ceinture à *Fucus serratus* et le début de la ceinture à laminaires. La perte de points se fait en 2016 à la fois sur la couverture algale (plus faible sur les fucales) et sur la plus forte présence d'espèces opportunistes. Ces dernières sont moins présentes en automne et l'indice est plus élevé.

Des variations du nombre et de la couverture algale des espèces caractéristiques apparaissent aussi au sein des ceintures générant selon les années des hausses ou baisses de l'indice comme c'est le cas en 2022 entre le printemps et l'automne.

Pour les deux saisons en 2022, une perte de points est causée par une plus faible couverture algale (Fig. 38) et un recouvrement plus faible des espèces caractéristiques. A l'automne, la valeur de l'indice est très proche d'un statut « moyen ».

Fig. 38 : Vue du haut de l'estran sur le site du Grouin avec une faible couverture algale dans les ceintures à Fucales à l'automne 2022

Ce classement peut être agrémenté des remarques suivantes :

- Le changement de liste d'espèces caractéristiques à partir de 2022 n'influence pas l'attribution des statuts écologiques de 2007 à 2019.
- L'absence de la ceinture à *Pelvetia canaliculata* (Pc) sur le site du Grouin NE Loix (île de Ré) IR peut paraître fortuite mais est probablement à relier au fort hydrodynamisme du médiolittoral supérieur du site et dont les effets sont probablement amplifiés par les enrochements artificiels de défense du chemin littoral. En effet, l'espèce est connue sur l'île de Ré, à Chanchardon, à l'entrée et dans le Fier d'Ars (de Beauchamp, 1920; 1923) et sur le continent comme à La Pallice (Crisp & Fischer-Piette, 1959) et à Fouras (Dizerbo & Herpe, 2007). Elle était pourtant déclarée commune ou assez commune par Lancelot (1961) à l'époque de ces observations entre les nées 1920 et les années de seconde guerre mondiale. Cette espèce pourrait, du fait de la rareté des sites d'observations, être déclarée en danger dans les Pertuis charentais. Elle a été repérée récemment (octobre 2013) sur le platier rocheux bordant la digue de protection du CREAA près du château d'Oléron côté chenal d'Arceau (Sauriau, obs. pers.) et plus récemment à Fouras lors des prospections de sites pour la mise en place d'un suivi de surveillance des macroalgues de substrat dur intertidal en masse d'eau de transition (Ar Gall & Le Duff, com. pers et observations personnelles). De même elle et observable sur les enrochements du secteur de Loix de l'île de Ré (Le Gall, comm. pers.) mais une prospection générale des hauts d'estrans de l'île de Ré permettrait d'obtenir une information fiable de la présence de cette espèce. Elle a par exemple été observée en une seule touffe sur la digue surplombant le site du contrôle de surveillance herbier de Zostera noltei du fiers d'Ars le 05/09/2017 mais est restée inobservable sur le même lieu le 18/09/2019 malgré une prospection étendue (Fig. 39).

Fig. 39 : Présence d'une touffe en 2017 de *Pelvetia canaliculata* et absence de celle-ci sur la digue du Fiers d'Ars au lieudit prise du Grand Garçon accès au site Fiers d'Ars du contrôle de surveillance herbier de *Zostera noltei*(Source Sauriau P.-G.)

- Il avait été noté que l'absence de la ceinture à *Himanthalia elongata* (He) / *Bifurcaria bifurcata* (Bb) / Rhodophyceae pourrait de premier abord paraître fortuite. La ceinture était supposée être présente sur une portion très réduite de l'estran présentant une topographie moins irrégulière. Les difficultés de repérage sur le terrain de cette ceinture sont à relier à l'absence avérée des deux principales espèces de cette ceinture *Himanthalia elongata* et *Bifurcaria bifurcata* sur les côtes charentaises (Dizerbo & Herpe, 2007). Cette ambiguïté a été levée lors du contrôle de surveillance 2013 avec le très fort développement

des algues rouges en particulier de *Callithamnion tetricum* permettant un repérage de la ceinture. Elle se distingue également de la ceinture à laminaires par l'absence ou la grande rareté des algues brunes *Undaria pinnatifida*, *Dictyota dichotoma* et *Dictyopteris polypodioides*.

- Le site est de mode semi-abrité, avec une influence des houles du large et des vents dominants de N-O provoquant à la fois des apports en éléments pélitiques en suspension et un délitement des banches calcaires jurassiques. La couverture algale initialement trouvée en 2007 de faible (10 25 %) à moyenne (50 75 %) dans le médiolittoral supérieur et moyen est apparue beaucoup plus dense en 2010 avec des recouvrements de moyens (50 75 %) à fort (50 100 %), ce qui pourrait être une conséquence positive de l'après tempête Xynthia. Cette tendance s'est poursuivie en 2013 année fraiche avec généralement une couverture au sol de 75 100 % sauf en médiolittoral supérieur. En 2016, un retour aux conditions de 2010 concernant les couvertures algales semble apparaître et se poursuivre jusqu'en 2019 puis en 2022, avec une nette diminution de le couverture algale des ceintures. Cela concerne l'ensemble des ceintures, avec une diminution plus marquée pour les ceintures du haut de l'estran à *Fucus spiralis* (Fspi) et à *Ascophyllum nodosum | Fucus vesiculosus* (An / Fves).
- L'impact de la pêche à pied (grattage, retournement de blocs) sur le médiolittoral moyen et inférieur et l'infralittoral exondable doit aussi être mentionnée sur ce site mais c'est une caractéristique commune à tous les estrans rocheux de l'île de Ré comme ceux de l'île d'Oléron, sauf exception très récente de la mise en œuvre d'une concession en réserve hors-pêche sur la côte Ouest Oléron (IODDE). Une mention toute particulière doit être faite pour *Padina pavonica* non retrouvée ni en 2016 ni en 2019 malgré un effort de prospection sur toutes les flaques de la ceinture à *Ascophyllum nodosum / Fucus vesiculosus*.
- Il doit être souligné la confirmation de la présence d'*Undaria pinnatifida* sur le site avec la découverte en 2010 de jeunes plants de courte taille sur la ceinture à Laminaires en 2010. Les *Undaria pinnatifida* observées en 2013 sont de taille moyenne plus grande et sont aussi plus nombreuses. Les plants sont généralement dispersés autour des crevasses. En 2016, une situation similaire a été notée, en revanche en 2017 les stipes et lames étaient déchiquetés et en 2019 un seul plant a été observé malgré une prospection générale de la ceinture lors des grandes marées du 30 septembre 2019 réalisées en plus des suivis DCE. En 2022, la présence de plusieurs *Undaria pinnatifida* de taille moyenne a été notée au printemps (Fig. 40 à gauche), mais n'ont pas été retrouvés à l'automne.

Fig. 40 : Présence de *Undaria pinnatifida* au printemps 2022 : thalles de taille moyenne non coupés (à gauche) et stipe d'un spécimen coupé par une collecte professionnelle à usage alimentaire (à droite)

(Source Vollette J. / OBIOS)

Il est également à noter que le site de suivi fait l'objet d'une collecte professionnelle de certaines espèces d'algues à usage alimentaire par la société « Algorythme – les algues de l'île de Ré », et fait à ce titre partie d'une concession. Cela concerne notamment les *Fucus serratus*, *Undaria pinnatifida* et *Chondrus crispus*. La récolte consiste en la coupe d'une partie supérieure du thalle, selon une

méthodologie étudiée avec le Centre d'Etude et de Valorisation des Algues (CEVA). En 2022, des spécimens de *Undaria pinnatifida* aux thalles coupés ont été observés dans le site suivi (Fig. 40, à droite).

Il est à noter en 2013 les observations de *Rhodophyllis divaricata*, *Apoglossum ruscifolium*, *Mastocarpus stellatus* et *Peyssonnelia atropurpurea*, toute algues rarement observées. En particulier *Mastocarpus stellatus / Petrocelis cruenta* est noté comme disparue de Ré, d'Oléron et de l'Aunis (Dizerbo & Herpe, 2007) selon les indications de Lancelot (1961, p. 181) précisant que l'espèce a presque totalement disparue sauf de façon exceptionnelle « une ou deux touffes à la pointe du Lizay île de Ré et aux Minimes près de La Rochelle ». Cette espèce est effectivement présente sur les côtes charentaises sous la forme *Mastocarpus stellatus* comme le confirme la synthèse des observations sur 30 ans de la SBCO (Bréret, 2008) mais elle n'a été observée qu'une seule fois à la Pointe de Chassiron sur Oléron en 1998 (Lahondère, 1999). Sa « redécouverte » au Grouin en 2013 uniquement sous la forme encroûtante *Mastocarpus stellatus* était un point notable du suivi DCE 2013. C'est une espèce abondamment observée sur les côtes vendéennes où les substrats rocheux apparentés au massif armoricain sont plus favorables à son complet développement (Bréret, com. pers.). L'espèce n'a pas été revue en 2016 ni 2017 mais a été notée de nouveau en 2019 et en une seule localité en 2022 lors de la prospection supplémentaire de la ceinture des laminaires (Fig. 41).

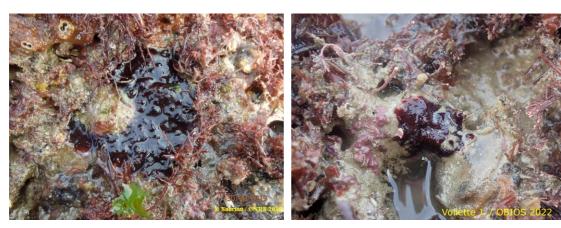


Fig. 41 : Présence de Mastocarpus stellatus dans la ceinture des algues rouges en association avec le mollusque bivalve Rocellaria dubia et les algues Ellisolandia elongata et Chondracanthus acicularis (Source Sauriau P.-G. et Vollette, J. / OBIOS)

6. Conclusion et Perspectives :

- Pour <u>Malban-GC08</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « très bons » (un EQR de 81) ; en conséquence, la masse d'eau FRGC08 (Perros-Guirec (large)) fera de nouveau l'objet d'un relevé en RCS en 2025.
- Pour Molène GC18, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « très bons » (un EQR de 88,5) ; en conséquence, la masse d'eau FRGC18 (Iroise (large)) fera de nouveau l'objet d'un relevé en RCS en 2025.
- -Pour <u>Keragan /Fort Bloqué</u>— <u>GC34</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 65,5) ; en conséquence, la masse d'eau FRGC34 (Lorient Groix) fera de nouveau l'objet d'un relevé en RCS en 2025.
- Pour <u>Belle-Ile GC42</u>, on obtient des résultats « très bons » (un EQR de 84,07) pour la note du printemps 2022 ; en conséquence, la masse d'eau FRGC42 (Belle-Ile)) fera de nouveau l'objet d'un relevé en RCS en 2025.
- Pour <u>Pénerf / Roch Viodec GC44</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 71) ; en conséquence, la masse d'eau FRGC44 (baie de Vilaine (côte)) fera de nouveau l'objet d'un relevé en RCS en 2025.

- Pour <u>Le Croisic / St Goustan GC45</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 68) ; en conséquence, la masse d'eau FRGC45 (baie de Vilaine (large)) fera de nouveau l'objet d'un relevé en RCS en 2025.
- Pour <u>Pte St Gildas GC46</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 73,48); en conséquence, la masse d'eau FRGC46 (Loire (large)) fera de nouveau l'objet d'un relevé en RCS en 2025.

Pour <u>L'Herbaudière – GC46</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 62,05) ; en conséquence, la masse d'eau FRGC46 (Loire (large)) fera de nouveau l'objet d'un relevé en RCS en 2025.

- Pour <u>Sabias GC47</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 69,75) ; en conséquence, la masse d'eau FRGC47 (Ile d'Yeu) fera de nouveau l'objet d'un relevé en RCS en 2025.
- Pour <u>La Sauzaie GC50</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 62,5) ; en conséquence, la masse d'eau FRGC50 (Nord Sables d'Olonne) fera de nouveau l'objet d'un relevé en RCS en 2025.
- Pour <u>Grouin NE- GC53</u>, en moyennant les notes du printemps et de l'automne 2022, on obtient des résultats « bons » (un EQR de 63) ; en conséquence, la masse d'eau FRGC53 (Pertuis breton) fera de nouveau l'objet d'un relevé en RCS en 2025.

Le tableau 220 récapitule et souligne l'intérêt d'un suivi bi-saisonnier, qui confirme d'une part la relative stabilité des EQR au sein des mêmes sites pour une année donnée, mais qui met également en exergue la variabilité potentielle des scores CCO d'une saison à l'autre, avec des écarts pouvant atteindre ou dépasser 5 points, dans un sens comme dans l'autre.

Masse d'eau Site	points/1 00 état qualitati f 2010	points/ 100 état qualita tif 2013	points/100 état qualitatif 2016		points/100 état qualitatif 2019		points/100 état qualitatif 2022	
	printem ps	printe mps	printe mps	auto mne	printe mps	autom ne	printe mps	automne
GC08 Malban	83	87	87	89	86	82	84	78
GC18 Molène	91	86	88	90	86	86	87	90
GC34 Keragan/Fort Bloqué		80,86			70,9	70,9	66	65
GC42 Belle-Ile							84,07	
GC44 Pénerf/Roch Viodec		77			69	79	78	73
GC45 Croisic/St Goustan	78	80,4	79,3	75,67	72	75	69	67
GC46 Pte St Gildas	73	81	66,8	68	78	73	78,96	68
GC46 L'Herbaudière	73,03	66,65	69,5	59,7	69,4	70,4	61,68	62,43
GC47 Sabias	68,36	78	78	66	82	74	69,5	70
GC50 La Sauzaie	62,79	63,33	71,1	63,4	68,4	63,3	63,33	61,67
GC53 Grouin NE	77,42	77,85	68,3	72,1	70,14	66,29	65,67	60,43

Tabl. 220 : Evolution temporelle des notations des sites relevés de 2010 à 2022 rique « composition spécifique » en 2016, 2020 et 2022